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Hypothesis Function: Kernel Methods

f̃ : X → R

• f̃ (xi) = f (xi) + b
• f lies in Reproducing Kernel Hilbert Space F ,b ∈ R



RKHS: Basic Concepts

• Functional Analysis
• metric space

• complete metric space
• normed space

• Banach Space
• inner product space

• Hilbert space



Metric Spaces

Definition
A metric space is a pair (X ,d), where X is a set and d is a
metric on X (or distance function on X ), that is, a function
defined on X × X such that for all x , y , z ∈ X we have:

• d is real-valued, finite and non-negative
• d(x , y) = 0 iff x = y
• d(x , y) = d(y , x) (Symmetry)
• d(x , y) ≤ d(x , z) + d(z, y) (Triangle inequality)



Examples

1. Rn with the metric
d(x , y) =

√
(x1 − y1)2 + (x2 − y2)2 + . . . (xn − yn)2

2. Cn with the metric
d(x , y) =

√
|x1 − y1|2 + |x2 − y2|2 + . . . |xn − yn|2

3. C[a,b] with the metric d(x , y) = maxt∈[a,b] |x(t)− y(t)|

4. Lp[a,b] : d(x , y) = (
∫ b

a (|x(t)− y(t)|)pdt)
1/p

5. l∞ with the metric d(x , y) = supj∈N |ηj − ψj |, where l∞ is a
bounded sequence of complex numbers,
x = (η1, η2, η3, . . . ), y = (ψ1, ψ2, ψ3, . . . ).



Sequence

• (x1, x2, x3, . . . )

• (1,1/2,1/3, . . . )
• (1,1 + x ,1 + x + x2/2!, . . . )
• Every element has a particular position



Open and Closed Set

• B(x0, ϵ) = {x ∈ X ;d(x , x0) < ϵ)}
• A subset M of X is said to be open if for every

x0 ∈ M,∃ ϵ > 0, such that, B(x0, ϵ) ⊂ M
• A subset M of X is said to be closed, if Mc is open



Questions

• (0,1)
• [0,1]
• Set of all polynomials defined on [a,b] ⊆ R



Continuous Function

Definition
A mapping T : (X ,d) → (Y, d̃) is said to be continuous at x0 if
for every ϵ > 0,∃ δ > 0 such that
d(x0, y) < δ → d(T (x0),Ty) < ϵ



Continuous Function



Limit Point

Let x0 ∈ X , where X a metric space. Then x0 is said to be a
limit point of a subset M of X , if ∀ϵ > 0, ∃xn ̸= x0 ∈ M such that
d(xn, x0) < ϵ



Questions

• Limit points of (0,1)
• Limit points of set of all rational numbers
• Limit points of set of all irrational numbers



Dense Subset

Definition
The closure of a subset M of a metric space X is the set
consisting of M and all the limit points of M and it is represented
as M.

Definition
A subset M of a metric space X is dense in X if M = X .



Questions

• Closure of (0,1)
• Closure of set of all rational numbers
• Closure of set of all irrational numbers
• Dense subset of R



Convergent Sequence

Definition
A sequence (xn) in (X .d) is said to be a convergent sequence if
there exists a x0 ∈ X , such that ∀ϵ > 0, ∃N such that
d(xn, x0) < ϵ ∀n > N.

• The sequence (
1
n
,n ∈ N) converges to 0. This is a

convergent sequence in [0,1], but a divergent sequence in
(0,1), as the limit 0 ∈ [0,1] and 0/∈ (0,1].

• The sequence (
1
n
,n ∈ N) is a convergent sequence in R.



Caushy Sequence

A sequence (xn) in a metric space is said to be Caushy
sequence if for every ϵ > 0 there is a N such that d(xm, xn) < ϵ
∀m,n > N.

Theorem
Every convergent sequence is Caushy.

Proof.
Let (xn) is a convergent sequence in X and x0 be its limit.
Choos ϵ > 0. By definition of convergence, ∃N such that
d(xm, x0) <

ϵ

2
,∀m > N. Now

d(xm′ , xn′) < d(xm′ , x0) + d(x0, xn′) =
ϵ

2
+
ϵ

2
= ϵ ∀m′,n′ > N.

Therefore (xn) is a Caushy sequence.



Caushy Sequence: Example

(x1, x2, . . . xN , xN+1, . . . ) is Caushy
If ϵ = 0.5 and N = 100 then,
d(x150, x1000) < 0.5



Complete Metric Space

There are some spaces where every Caushy sequence
converges.

• The space X is said to be a complete metric space if every
Caushy sequence converges.

• Rn, Cn, C[a,b] are complete metric spaces with usual
metric.

• The set of rational numbers Q with Euclidean metric is not
a complete metric space, as every irrational number can
be represented as the limit of rational numbers.



Example

• Let X be the set of all polynomials on some finite closed
interval J = [a,b]

• a1(t) = t + t2, b1(t) = t + 2t
• d(a1(t),b1(t)) = maxt∈[a,b](|a1(t)− b1(t)|)

• (t , t − t3

3!
, t − t3

3!
+

t5

5!
, . . . )



Lp[a,b]

C[a,b] with metric

d(x(t), y(t) =
(∫ b

a (|x(t)− y(t)|)pdt
)1

p ,p ≥ 1 is an incomplete
metric space
The completion of C[a,b] with the above metric is the space
Lp[a,b]



Limit Point and Sequence

Theorem
x ∈ M, if and only if there exists a sequence (xn) ∈ M, such
that xn → x .

Proof.
Let x ∈ M. To prove that there exists a sequence (xn) ∈ M,
such that xn → x : If x ∈ M, then (x , x , . . . x) → x . If x /∈ M, then
also we can find a sequence (xn) ∈ M that converges to x , by
taking xn ∈ B(x ,1/n) , as x is the limit point of M.
To prove the converse, assume there exists a sequence
(xn) ∈ M that converges to x . Then every neighbor hood of x
contains atleast a xn, that is atleast one element of M.
Therefore x is a limit point of M.



• Set of polynomials is dense in C[a,b]
• Set of polynomials is dense in Lp[a,b]
• the Weierstrass approximation theorem states that every

continuous function defined on a closed interval [a,b] can
be uniformly approximated as closely as desired by a
polynomial function



Limit Point and Sequence

• M is closed iff M = M
• If M is closed for every x ∈ M, there exists a sequence
(xn) ∈ M, such that xn → x .



Vector Space

A set V is a vector space over a field K if there exists a
structure {V ,K ,+, ∗) consisting of V , K , a vector addition
operation + and a scalar multiplication ∗. This structure must
obey the following axioms for any u, v ,w ∈ V and α, β ∈ K :

• Associative Law: (u + v) + w = u + (v + w).
• Commutative Law: u + v = v + u.
• Additive identity: for any vector v in V, 0 + v = v and v + 0 =

v.
• Inverse: ∀u ∈ V , ∃s ∈ V such that u + s = 0
• Unitarity: 1u = u,1 ∈ K ,u ∈ V
• Multiplication by scalars: α ∗ v ∈ V
• Distributive Laws α ∗ (u + v) = α ∗ u + α ∗ v and
(α+ β) ∗ u = α ∗ u + β ∗ v



Normed Space

Definition
A normed space is a vector space with a norm defined on it. A
norm on a vector space X is a function || || → R such that:

• ||x || ≥ 0
• ||αx || = |α|||x ||
• ||x + y || ≤ ||x ||+ ||y ||
• ||x || = 0 implies x = 0

• Rn,Cn

• C[a,b] : ∥x∥ = maxt∈[a,b] |x(t)|

• Lp[a,b] : ∥x∥ =
(∫ b

a |x(t)|pdt
)1/p

,p ≥ 1



Banach Space

•
d(x , y) = ||x − y ||

• All normed spaces are metric spaces. But the converse is
not true.

• A Banach space is a complete normed space



Linear Operator

Definition
A linear operator T is an operator such that

• the domain D(T ) and the range R(T ) of T are vector
spaces over the same field

• T (x + y) = T (x) + T (y); T (α(x)) = αT (x) where,
x , y ∈ D(T ) and α ∈ K .



Supremum

The supremum (sup) of a set is its least upper bound. sup(0,1)
is 1.
Supremum is called maximum when the least upper bound is a
member of the set. Maximum of [0,1] is 1.



Bounded Linear Operator

Definition
Let X and Y be normed spaces and T : X → Y a linear
operator. The operator T is said to be bounded if there is a real
number c > 0 such that for all x ∈ X , ||Tx || ≤ c||x ||.

||T || = supx∈X ,x ̸=0
||Tx ||
||x ||

or||T || = supx∈X ,||x ||=1||Tx ||.

• ||T || is called the operator norm. Operator norm satisfies
all the properties of a norm.



Bounded Linear Functional

A bounded linear functional f is a bounded linear operator with
the range lies on the scalar field of its domain.

f : X → K

||f || = supx∈X ,x ̸=0
||f (x)||
||x ||

or else
||f || = supx∈X),||x ||=1||f (x)||

.

Theorem
A linear operator T is continuous iff it is bounded.



Operator Norm

• The operator norm can be defined only for bounded linear
operator or functionals

• Operator norm satisfies all the properties of the norm

||T || = supx∈X ,x ̸=0
||Tx ||
||x ||

or||T || = supx∈X ,||x ||=1||Tx ||.

||f || = supx∈X ,x ̸=0
||f (x)||
||x ||

or else
||f || = supx∈X),||x ||=1||f (x)||

.



Inner Product Space

Definition
An inner product space is a vector space X with an inner
product defined on X. An inner product is a mapping
⟨, ⟩ : X × X → K

• ⟨x + y , z⟩ = ⟨x , z⟩+ ⟨y , z⟩

• ⟨αx , y⟩ = α⟨x , y⟩

• ⟨x , y⟩ = ⟨y , x⟩

• ⟨x , x⟩ ≥ 0, ⟨x , x⟩ = 0 iff x = 0

• Rn,Cn

• L2[a,b]

⟨f ,g⟩ =
∫ b

a
f (t)g(t)dt



Caushy-Schwartz Inequality

∥⟨x , y⟩∥ ≤ ∥x∥∥y∥,∀x , y ∈ inner product space X



Relation Between Metric Space, Normed Space and
Inner Product Space

• ||x || =
√
⟨x , x⟩, d(x , y) = ||x − y || =

√
⟨x − y , x − y⟩

• All inner product spaces are normed spaces. The
converse is not true.



Hilbert Space

Definition
A Hilbert space is a complete inner product space



Projection Theorem

Theorem
Let Y be a closed subspace of a Hilbert space H. Then
H = Y ⊕ Y⊥.

Every x ∈ H can be uniquely expressed as
x = y + y ′, y ∈ Y , y ′ ∈ Y⊥



The scalar field K of any vector space is taken to be R for the
rest of the slides.



Reisz Representation Theorem

• Every bounded linear functional T on a Hilbert space H
can be represented in terms of innerproduct, namely,
∃z ∈ H, such that

T (x) = ⟨x , z⟩, ∀x ∈ H

where z depends on T , is uniquely determined by T and
has norm ||z|| = ||T ||

• T : H → R, where H is a Hilbert space

• T bounded and linear

• T (x) = ⟨x , z⟩, z is unique and depends only on T



Checking Reisz Theorem

• Find ∥f∥ using the formula of operator norm

• The operator norm is defined by

||f || = supx∈X ,x ̸=0
||f (x)||
||x ||

|f (x)|
∥x∥

≤ ∥w∥∀x ∈ X

Therefore,

supx∈Rn,x ̸=0
||f (x)||
||x ||

≤ ∥w∥

∥f∥ ≤ ∥w∥ (1)



Now,
f (w) = ⟨w ,w⟩ = ∥w∥2

Therefore, |f (w)| = ∥w∥2 and
|f (w)|
∥w∥

= ∥w∥.

As ∥f∥ is the supremum of the set ,
{
||f (x)||
||x ||

: x ∈ Rn, x ̸= 0
}

∥f (w)∥
∥w∥

≤ ∥f∥

∥w∥ ≤ ∥f∥ (2)

From (1) and (2)
∥f∥ = ∥w∥



Space of Functions



Evaluation Functional

Consider H = {f : f : X → R}, a Hilbert space of functions.

Definition
An evaluation functional over the Hilbert space of functions H is
a linear functional Lx : H→ R such that Lx(f ) = f (x),∀f ∈ H.



Point Evaluation Functional or Evaluation Functional

Let H be a Hilbert space of real-valued functions defined on a
domain X .

Definition
The point evaluation functional at a fixed point x ∈ X is the
linear functional

Lx : H → R, Lx(f ) = f (x), ∀f ∈ H.

Properties:
• Linearity: For any f ,g ∈ H and scalars a,b,

Lx(af + bg) = af (x) + bg(x).



Reproducing Kernel Hilbert Space (RKHS)

Definition
A Reproducing Kernel Hilbert Space (RKHS) F is a Hilbert
space of functions defined on some set X , in which all point
evaluation functionals are bounded linear functionals.



Riesz Theorem on RKHS F

• Lxi : F → R, xi ∈ X
• Lxi (f ) = f (xi)
• By the RKHS property, Lxi is a bounded linear functional on

F . By the Riesz theorem:
• Lxi (f ) = f (xi) = ⟨f , z⟩F , ∀f ∈ F , for some z ∈ F .
• Define z = kxi , where kxi is the reproducing kernel function.



Representor of Evaluation

Consider the set of evaluation functionals defined on the RKHS
F :

{Lxi : Lxi : F → R}xi∈X .

By the properties of RKHS, {Lxi}xi∈X are bounded linear
functionals defined on F . Therefore, by the Riesz
representation theorem, there exists a unique kxi ∈ F such that

Lxi (f ) = f (xi) = ⟨f , kxi ⟩, ∀f ∈ F , i = 1,2, . . . (3)

Here, kxi is called the representor of evaluation at xi . The
representor kxi depends only on Lxi and the point xi . Thus, for
each xi ∈ X , there exists a kxi ∈ F .



Association of Input Space and RKHS

• ϕ : X → F is a mapping such that ϕ(x) = kx .
• The function ϕ is called the feature mapping.
• Each point in the input space X is mapped to a point in the

feature space (RKHS) F .



RKHS: Reproducing Property

Consider f ∈ F . From (3),

f (x) = ⟨f , kx⟩, x ∈ X , kx ∈ F , ∀x ∈ X

This equation is called the reproducing property because the
function values are "reproduced" via inner products in the
Hilbert space.



RKHS: Reproducing Property

Consider f ∈ F . From Equation (3), we have:

f (x) = ⟨f , kx⟩F , ∀x ∈ X , kx ∈ F .

This equation is called the reproducing property because the
function values are "reproduced" via inner products in the
Hilbert space.



Equivalence of a function defined on X with a
hyperplane equation defined on RKHS

Consider f ∈ F . Define

f̃ : X → R

where

f̃ (x) = f (x) + b,b ∈ R

Therefore
f̃ (x) = ⟨f , kx⟩+ b = ⟨f , ϕ(x)⟩+ b

Define Hf : F → R where Hf (g) = ⟨f ,g⟩. Hf is a linear function
in RKHS. Now,

f̃ (x) = Hf (ϕ(x)) + b



Classification and Regression in RKHS Settings

• Classification:y ∈ {0,1}
• f̃ (x) ≥ 0 implies Hf (ϕ(x)) + b ≥ 0
• Hf (g) + b = 0 is the equation of a hyperplane in RKHS
• Decision boundary is a hyperplane in RKHS

• Regression:y ∈ R
• f̃ (x) = f (x) + b = y implies Hf (ϕ(x)) + b = y
• Hf ,b(g) + b = α, α ∈ R is the equation of a hyperplane in

RKHS
• (ϕ(x), y) lies in a hyperplane

• Finding f̃ in input space is equivalent to finding Hf and b.



Classification and Regression in RKHS Settings

• Classification: y ∈ {0,1}
• f̃ (x) ≥ 0 implies Hf (ϕ(x)) + b ≥ 0
• The decision boundary is given by Hf (ϕ(x)) + b = 0, which

defines a hyperplane in RKHS.

• Regression: y ∈ R
• f̃ (x) = f (x) + b = y implies Hf (ϕ(x)) + b = y
• The equation Hf (ϕ(x)) + b = α, α ∈ R defines a

hyperplane in RKHS.
• Each data point (ϕ(x), y) lies on this hyperplane.

• Finding f̃ in the input space is equivalent to finding Hf and
b in RKHS.



Value of kxi

f (xi) = ⟨f , kxi ⟩ (4)

kxi (xj) = ⟨kxi , kxj ⟩ (5)



Reproducing Kernel

For each xi ∈ X , there exists a unique function kxi ∈ F . The
values of kxi are determined using the inner product structure in
the RKHS.

The reproducing kernel (r.k.) k is defined as:

k : X × X → R

such that:
k(x , y) = ⟨kx , ky ⟩ = ⟨ϕ(x), ϕ(y)⟩

From Equation (5), we obtain:

k(x , y) = kx(y) = ky (x)



Reproducing Kernel & RKHS

• Associated with every RKHS there exists a unique r.k and
vice versa.



Span of a Subset

M = {v1, v2, . . . } ⊆ H, where H is a Hilbert space.
Span(M) = {

∑
i αivi , αi ∈ R, vi ∈ M}

M⊥ = {v ′ ∈ H : ⟨v , v ′⟩ = 0,∀v ∈ M}



Spanning Property

Lemma
For any subset M ̸= ϕ of a Hilbert space H, the span of M is
dense in H iff M⊥ = {0}.
That is,

{span(M)} = H, iff M⊥ = {0}



Spanning Property of {kxi}

Theorem
span(M) = F , where M = {kxi , i = 1,2, . . . } ⊆ RKHS F .

Proof.
Let f ∈ M⊥. Therefore

⟨f , kx⟩ = 0,∀kx ∈ M

This implies,
f (x) = 0 ∀x ∈ X

Hence f ≡ 0.Therefore M⊥ = {0}. Hence by the above lemma,
span(M) = F .



Spanning Property of {kxi}

Theorem
Every f ∈ F can be expressed as

f =
∞∑

i=1

αikxi , αi ∈ R.

For proof, we make use of the following result:
x ∈ M, if and only if there exists a sequence (xn) ∈ M, such
that xn → x .



Proof: Spanning Property of {kxi}

Proof.
M = {kxi , i = 1,2, . . . }. Therefore
span(M) = {

∑
i αikxi , αi ∈ R, kxi ∈ F}. Now span(M) = F .

f ∈ F . Therefore , there exists a sequence
(f1, f2, . . . fn, . . . ) ∈ span(M) where fn =

∑n
i αikxi , such that

fn → f . As f = limn→∞ fn

f =
∞∑

i=1

αikxi



Kernel Trick

f (x) = ⟨f , kx⟩ = ⟨
∞∑

i=1

αikxi , kx⟩ =
∞∑

i=1

αi⟨kxi , kx⟩ =
∞∑

i=1

αi⟨ϕ(xi), ϕ(x)⟩

Therefore

f (x) =
∞∑

i=1

αik(xi , x)

• Substituting k(x , y) in place of ⟨kx , ky ⟩, that is, ⟨ϕ(x), ϕ(y)⟩
is known as kernel trick, in the field of machine learning
community



Semi Positive definite function

Definition
A function k : X × X → R is semi positive-definite if∑

i,j

aiajk(xi , xj) ≥ 0

for all ai ,aj ∈ R



Properties of reproducing kernel

• The reproducing kernel k is semi positive definite on
X × X , since, for any x1, x2, · · · ∈ X and a1,a2, · · · ∈ R∑

i,j

aiajk(xi , xj) =
∑
i,j

aiaj⟨kxi , kxj ⟩

=

〈∑
i

aikxi ,
∑

i

aikxi

〉
= ||

∑
i,j

aikxi ||
2 ≥ 0



Semi Positive definite Kernel & RKHS

The Moore-Aronszajn-Theorem states that for every semi
positive definite kernel on X × X , there exists a unique RKHS
and vice versa.



Kernel Matrix

• Kernel matrix: Given a kernel k and points x1, . . . , xN ∈ X ,
the N × N matrix

K = [k(xi , xj)]ij

is called the kernel matrix (Gram matrix) of k with respect
to x1, . . . , xN .



Kernel Matrix

K =



k(x1, x1) k(x1, x2) · · · k(x1, xN)
k(x2, x1) k(x2, x2) · · · k(x2, xN)

...
...

...
...

k(xN , x1) k(xN , x2) · · · k(xN , xN)





Semi Positive definite matrix

Definition
(Semi Positive definite matrix) A real N × N symmetric matrix K
satisfying

cT Kc =
∑

i

∑
j

cicjKij ≥ 0 (6)

for all c ∈ RN is called semi positive definite.[Kij is the ijth
element of K ]. If equality in (6) only occurs when c is a zero
vector, then the matrix is called as positive definite.



Kernel Matrix

A function k : X × X is a reproducing kernel if and only for all
N ∈ N, xi ∈ X , the corresponding kernel matrix K is semi
positive definite.



Semi Positive Definite Function and Reproducing
Kernel

A function k : X × X is a kernel iff it is semi positive definite
function.



Set of all linear functionals defined on Rn

• Set of all linear functionals defined on Rn:
H∗ = {f : Rn → R : f (x) = ⟨wf , x⟩}

• H∗ consists of bounded linear functionals
• Corresponding to each f ∈ H∗ exists a hyperplane :
{x ∈ Rn : f (x) = ⟨wf , x⟩}}. That is f (x) = ⟨wf , x⟩ is a
equation to a hyperplane in Rn

• H∗ is a Hilbert space with ∥f∥ = ∥f∥operator where ∥f∥operator
is the operator norm of f .

• H∗ is called the dual space of Rn



H∗

• Lx : H∗ → R, Lx f = f (x). Is Lx bounded?
By Reisz theorem ∥f∥ = ∥wf∥.
Lx(f + g) = (f + g)(x) = f (x) + g(x),
Lx(αf ) = (αf )(x) = αf (x) = αLx(f )
To prove Lx is bounded for all x ,
∥Lx(f )∥ = ∥f (x)∥ = ∥⟨wf , x⟩∥ ≤ ∥wf∥∥x∥ = ∥f∥∥x∥, ∀f ∈ H∗.
Lx : x ∈ Rn are bounded linear functionals. H∗ is a RKHS
space.



Linear Kernel

Consider k(xi , xj) = ⟨xi , xj⟩, Prove that k is positive semi
definite.

Proof.

∑
i

∑
j

αiαjk(xi , xj) =
∑

i

∑
j

αiαj⟨xi , xj⟩

= ||αixi ||2 ≥ 0

k is positive semidefinite.



RKHS Corresponding to Linear Kernel

Linear Kernel: k(xi , xj) = ⟨xi , xj⟩
As k is positive semidefinite, there exists a RKHS
corresponding to k .
By definition k(xi , xj) = kxi (xj) = kxj (xi)
kxi (xj) = ⟨xi , xj⟩, j = 1,2, . . . implies kxi is linear function defined
on Rn.
Therefore the RKHS corresponding to the linear kernel consists
of all the linear functions defined on Rn, that is the dual space
of Rn.



Procedure for finding Affine function (Hyperplane) in
input space: Classification & Regression

f̃ (x) = f (x) + b,b ∈ R where f (x) = ⟨w , x⟩.
f ∈ H∗ whose kernel is the linear kernel. Therefore

f (x) = ⟨f , x⟩ =
∑

i

αik(xi , x) =
∑

i

αi⟨xi , x⟩

Therefore
f̃ (x) =

∑
i

αi⟨xi , x⟩+ b

,



Construction of Kernels
(from Bishop’s book)



Polynomial Kernel

k(x , y) = (⟨x , y⟩+ c)d , c ≥ 0,d ∈ N
We will look into the RKHS F corresponding with
k(x , y) = (⟨x , y⟩)2, x = (x (1), x (2))T , y = (y (1), y (2))T ∈ R2.

k(x , y) = (⟨x , y⟩)2

=
(

x (1)y (1) + x (2)y (2)
)2

= x (1)2
y (1)2

+ x (2)2
y (2)2

+ 2x (1)y (1)x (2)y (2)

=
〈(

x (1)2
, x (2)2

,
√

2x (1)x (2)
)
,
(

y (1)2
, y (2)2

,
√

2y (1)y (2)
)〉

If we define ϕ̃ : R2 → R3 by ϕ̃(x) = (
(

x (1)2
, x (2)2

,
√

2x (1)x (2)
)

,
then

k(x , y) = kx(y) = ⟨ϕ̃(x), ϕ̃(y)⟩, ∀x , y ∈ R2 (7)



Define
Hϕ̃(x) : R

3 → R

by

Hϕ̃(x)(x
′) = ⟨ϕ̃(x), x ′⟩

Hϕ̃ is a linear function defined on R3 and hence
Hϕ̃(x ′) = ⟨ϕ̃(x), x ′⟩ is the equation of a hyperplane having the
parameter ϕ̃(x).

kx(y) = ⟨ϕ̃(x), ϕ̃(y)⟩ = Hϕ̃(x)(ϕ̃(y))

Therefore, corresponding to each kx ∈ F , there exists a linear
function defined on R3.



Let f ∈ F .

f (x) =
∑

αik(xi , x)

=
∑

i

αi⟨ϕ̃(xi), ϕ̃(x)⟩(from (7))

=

〈∑
i

αi ϕ̃(xi), ϕ̃(x)

〉

Define
H∑

i αi ϕ̃(xi )
: R3 → R

by

H∑
i αi ϕ̃(xi )

(x ′) =

〈∑
i

αi ϕ̃(xi), x ′

〉
Thus

f (x) = H∑
i αi ϕ̃(xi )

(ϕ̃(x))



H∑
i αi ϕ̃(xi )

is a linear function defined on R3 and hence

H∑
i αi ϕ̃(xi )

(x ′) = ⟨
∑

i αi ϕ̃(xi), x ′⟩ is the equation of a hyperplane

having the parameter
∑

i αi ϕ̃(xi). Therefore corresponding to f
there exists a linear function defined on R3. Hence

f̃ (x) = f (x) + b = H∑
i αi ϕ̃(xi )

(ϕ̃(x)) + b

.



• Classification
•

V1 = {x ′ ∈ R3 : H∑
i αi ϕ̃(xi )

(x ′) + b ≥ 0}
•

V2 = {x ′ ∈ R3 : H∑
i αi ϕ̃(xi )

(x ′) + b < 0}

• If f̃ (xi) ≥ 0, ϕ̃(xi) ∈ V1, f̃ (xi) < 0, ϕ̃(xi) ∈ V2
• Hence the points that is mapped using ϕ̃ can be separated

by the hyperplane H∑
i αi ϕ̃(xi )

(x ′) + b = 0 in R3.

• Regression
• If f̃ (x) = y , then H∑

i αi ϕ̃(xi )
(ϕ̃(x)) + b = y . Therefore

(ϕ̃(x)), y) lies on the hyperplane H∑
i αi ϕ̃(xi )

(x ′) + b = y



Figure: Non Linear in R2

Figure: Hyperplane in R3



Examples of Kernel Functions

Linear k(x , x ′) = ⟨x , x ′⟩

Gaussian RBF(β ∈ R+) k(x , x ′) = exp
(
−β||x − x ′||2

)
Polynomial (d ∈ N, θ ≥ 0) k(x , x ′) = [(x .x ′) + θ]d

Inverse Multiquadratic (c > 0) k(x , x ′) =
1√

||x − x ′||2 + c



Supervised Learning: Kernel Theory

Given data {(x1, y1), x2, y2), .... . . . (xN , yN)}, xi ∈ Rn, yi ∈ R .
Assume f̃ (x) = f (x) + b,b ∈ R, x ∈ Rn be the function that
generates the data. Assume f belings to RKHS F with k .

f̃ (x) = ⟨f , kx⟩+ b =

〈∑
i

αikxi , kx

〉
+ b (8)

The RHS of (8) corresponds to a hyperplane in RKHS



Overfitting and Underfitting

Image taken from Bishop’s Book



Smooth Function

• Small change in input corresponds to small change in
output

• f ∈ F

||f (x)− f (x ′)|| = ∥⟨f , kx⟩ − ⟨f , kx ′⟩∥ = ∥Hf (kx)− Hf (kx ′)∥

∥Hf (kx)− Hf (kx ′)∥ = ||⟨f , kx − kx ′⟩|| ≤ ||f || ||kx − kx ′ ||

• ||f|| small guarantees function to be smooth



Optimisation

min
f∈F

1
N

∑N
i=1 V (yi , f (xi))

subject to∥f∥2 ≤ k



Cost Function

• The cost function used in kernel methods is the regularized
cost function:

J(f ) =
1
N

N∑
i=1

V (yi , f (xi)) + λ||f ||2 (9)

where V is the loss function, which is differentiable, and
λ > 0 is the regularization parameter. The loss function
V (yi , f (xi)) measures the error between the predicted
value f (xi) and given output yi .

• The solution f ∗ = argminf∈F J(f ). The cost function J is
convex. Therefore there exists a unique minimiser.

• Kernel methods can be divided into different types
depending upon the loss function they are using.



Representation

Using the representer theorem that the minimization problem
(9) gives the solution of the learning problem in terms of the
number of training points. That is

f =
N∑

i=1

αikxi

f (x) =
N∑

i=1

αik(xi , x)



Representor Theorem

The Representer theorem can be stated as follows:

Theorem
Denote Ω : [0,∞) → R] a strictly a monotonically increasing
function, by X a set, by V : (X × R2)

N an arbitrary loss
function. Then any f ∈ RKHS F minimizing the regularized risk
functional

V ((x1, y1, f (x1)), . . . , (xN , yN , f (xN))) + Ω(||f ||)

admits a representation of the form

f (.) =
N∑

i=1

αikxi .



Representor Theorem

Theorem
Any f ∈ F that minimizes

J(f ) =
1
N

N∑
i=1

V (yi , f (xi)) + λ||f ||2

is of the form

f =
N∑

i=1

αikxi



Proof: Representor Theorem
Given f is the minimiser of the regularized risk functional. It is
unique as J is convex. Let Y = span(kxi )

N
i=1. As every finite

dimensional subspace of a normed space X is closed in X , Y
is a closed subspace of F . Therefore by projection theorem,

F = Y ⊕ Y⊥

Hence
f = fy + fy⊥ , fy ∈ Y , fy⊥ ∈ Y⊥

Now

f (xi) = ⟨f , kxi ⟩
= ⟨fy , kxi ⟩

As fy ∈ Y , fy =
∑N

i=1 αikxi . Therefore

f (x) = fy (x) =
N∑

i=1

αik(xi , x)

Hence fy⊥ has no role in determining the value of f .



Now

||f ||2 = ||fy + fy⊥ ||2

= (||fy ||2 + ||fy⊥ ||2)
≥ |fy ||2

Therefore ||f || ≥ ||fy ||. Thus fy satisfies the given points and
also has norm less than or equal to f . Therefore fy is a better
solution of J than f . Given f is the unique minimizer. Therefore,
f ≡ fy . Therefore

f =
N∑

i=1

αikxi



Representation of the solution
By using N points, the projection of f onto the subspace of
{kx1 , kx2 , . . . kxn} is determined using the regularized cost
function.



Significance of Representor Theorem

• The significance of the representor theorem is that the
number of terms in the minimiser of regularized risk
functional depends only of the number of training points,
that is, it is independent of the dimensionality of RKHS
space.



Inclusion of Bias

• If f ∈ F , f (x) = ⟨f , kx⟩. Is that possible to model a function
that generates the data of the form f̃ (x) = ⟨f , kx⟩+ b,b ∈ R
by making use of kernel theory?. For that we make use of
semi parametric representor theorem.



Optimisation

min
f∈F ,b∈R

1
N

∑N
i=1 V (yi , f̃ (xi))

subject to∥f∥2 ≤ k



Semiparametric Theorem

Suppose that in addition to the assumptions of the previous
theorem we are given a set of M real valued functions {Ψp}M

p=1
on X with the property that the N × M matrix (Ψ(xi))ip has rank
M. Then any f̃ := f + h with f ∈ F and h ∈ span{Ψp}
minimizing the regularized risk functional

c((x1, y1, f̃ (x1)), . . . , (xN , yN , f̃ (xN))) + g(||f ||)

admits a representation of the form

f̃ (.) =
N∑

i=1

αikxi +
M∑

i=1

βpΨp.

where βp,p = 1,2 . . .M are uniquely determined.



Semiparametric Representor Theorem

Theorem
Consider span {Ψ}, where Ψ(x) = c,∀x ∈ X . Any f̃ := f + h
with f ∈ F and h ∈ span{Ψ} that minimizing the regularized
risk functional

J(f ,b) =
1
N

N∑
i=1

V (yi , f̃ (xi)) + λ||f ||2

is of the form

f̃ =
N∑

i=1

αikxi + βψ

where β is uniquely determined.



Given f̃ = f + h is the minimiser of the regularized risk
functional. Let Y = span(kxi )

N
i=1. As every finite dimensional

subspace of a normed space X is closed in X , Y is closed.
Therefore by projection theorem,

F = Y ⊕ Y⊥

Hence f̃ = fy + fy⊥ + h, fy ∈ Y , fy⊥ ∈ Y⊥.
Also

fy =
N∑

i=1

αikxi

f̃ (xi) = fy (xi) + fy⊥(xi) + h(xi)

= ⟨fy , kxi ⟩+ ⟨fy⊥ , kxi ⟩+ h(xi)

= ⟨fy , kxi ⟩+ h(xi)

Hence fy⊥ has no role in determining the value of f̃ . That is
fy + h also satisfies the given points.



Now

||f ||2 = (||fy + fy⊥ ||2

= (||fy ||2 + ||fy⊥ ||2) ≥ |fy ||2

Therefore ||f || ≥ ||fy ||. Thus fy + h satisfies the given points and
fy has the norm less than or equal to f . Therefore fy + h is a
better solution of J than f̃ . Given f̃ is the minimiser. Therefore
f̃ = fy + h. Hence f̃ =

∑N
i=1 αikxi + h



As h lies in a one dimensional space spanned by ψ, there
exists a unique α ∈ R such that h = αψ Hence

f̃ =
N∑

i=1

αikxi + βψ

˜f (x) =
N∑

i=1

αik(xi , x) + b

where b = βψ(x)



Frove the above two proofs, it is clear that the number of
functions in RKHS that satisfies the given data points is equal
to the cardinality of Y⊥. That is fy + f ′, f ′ ∈ Y⊥, satisfies the
given points. Among that fy + fy⊥ has the smallest norm. Thus
adding ||f ||2 help to get a unique solution.



Kernel Methods


