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One of the most well known instabilities in fluid mechanics is the instability at the interface

between two horizontal parallel streams of different velocities and densities, with the heavier

fluid at the bottom. This is called Kelvin–Helmholtz instability. The name is also commonly

used to describe the instability where the variations of velocity and density are continuous. If the

discontinuity exists only in the velocity (densities of both layer are same) such a configuration

is called a vortex sheet.

Development of perturbation equations

Let us investigate the motion of the surface of discontinuity located at y = 0 in the unperturbed

state (Fig. 1). Assume that the layers have infinite depth and that the interface has zero

thickness. Let U1 and ρ1 be the velocity and density of the basic state in the upper layer of

(x, y)-plane and U2 and ρ2 be those in the bottom layer.

Let us consider the equations that govern the flow, including any perturbation. The flow

above the vortex sheet has a velocity potential φ1 and that below the sheet φ2. Incompressible,

irrotational (potential) flows satisfy

∇
2
φ1 = 0 and ∇

2
φ2 = 0 (1)

with boundary conditions

∇φ1 = U1 as y→ ∞

∇φ2 = U2 as y→−∞

(2)

These conditions require that the perturbation die out far from the interface. Suppose that due

to a perturbation the interface is deformed and is described by the equation, y = η(x, t). The

perturbed interface can also be represented by a parametric equation of the form f (x, y, t) = 0.

Since, y − η(x, t) = 0 at every point (x, y) on the interface at any time t, it is clear that

f (x, y, t) = y − η(x, t) (3)

If the interface moves with a velocity V int, the kinematic condition at the interface is given by

D f
Dt

=
∂ f
∂ t

+ V int ·∇ f = 0 (4)
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Figure 1: Kelvin–Helmholtz instability: Initial perturbed state

Using (3) equation (4) can be written as

∂η

∂ t
+ u

∂η

∂x
= vη at y = η(x, t) (5)

where vη is the vertical component of fluid velocity at the interface. Equation (5) is the

kinematic boundary condition which states that the interface moves up and down with a velocity

equal to the vertical component of the fluid velocity.

Considering particles just above the interface, the kinematic boundary condition requires

∂η

∂ t
+ (U1 + u′1)

∂η

∂x
= v′1 at y = η(x, t)

where u′1 and v′1 are the components of the perturbed velocity in the x and y-directions respec-

tively. Since the base flow is in the x-direction, we have v′1 = ∂φ1/∂y. Therefore, the above

equation may be rearranged as

∂φ1

∂y
=

∂η

∂ t
+ (U1 + u′1)

∂η

∂x
at y = η(x, t) (6)

A similar argument can be made for the lower layer, with the result that

∂φ2

∂y
=

∂η

∂ t
+ (U2 + u′2)

∂η

∂x
at y = η(x, t) (7)

This provides a boundary condition on φ1 and φ2.

The dynamic boundary condition is derived from the unsteady Bernoulli equation:

∂φ

∂ t
+

p
ρ
+

(∇φ)2

2
+ gy = C(t) (8)

Since (8) holds on both sides of the surface, we have

∂φ1

∂ t
+

p1

ρ1
+

(∇φ1)
2

2
+ gy = C1

∂φ2

∂ t
+

p2

ρ2
+

(∇φ2)
2

2
+ gy = C2

(9)
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The condition at the interface requires that pressure must be continuous across the interface

(if surface tension is neglected). That is p1 = p2 at the interface and hence for y = η , we have

ρ1

(
∂φ1

∂ t
+

(∇φ1)
2

2
−C1

)
= ρ2

(
∂φ2

∂ t
+

(∇φ2)
2

2
−C2

)
(10)

Equations (1), (2), (6), (7), and (10) govern the inviscid motion of a slip interface and flows on

either side.

The basic flow U1, U2 satisfy the problem with η = 0, the dynamic boundary condition then

reduces to

ρ1
(1

2U2
1 −C1

)
= ρ2

(1
2U2

2 −C2
)

(11)

The flow is decomposed into a basic state plus perturbations. Thus, the potentials are

φ1 = U1x + φ
′
1

φ2 = U2x + φ
′
2

(12)

where the first terms on the right-hand side represent the basic flow of uniform streams. When

these relations are substituted into equation (1) we find that

∇
2
φ
′
1 = 0 and ∇

2
φ
′
2 = 0 (13)

While equation (2) shows that the perturbations die out at infinity:

∇φ
′
1 = 0 as y→ ∞

∇φ
′
2 = 0 as y→−∞

(14)

The surface conditions (6) and (7) can be linearized by applying it at y = 0 instead of at y = η

and by dropping quadratic terms.

∂φ ′1
∂y

=
∂η

∂ t
+ U1

∂η

∂x
at y = 0

∂φ ′2
∂y

=
∂η

∂ t
+ U2

∂η

∂x
at y = 0

(15)

Introducing the decomposition (12) into the dynamic boundary conditions (9), and requiring

p1 = p2 at y = η , we perform following exercise to obtain a condition at the interface:

The first equation in (9) becomes

∂

∂ t

(
U1x+φ

′
1
)
+

p1

ρ1
+ 1

2

[
∇
(
U1x+φ

′
1
)]2

+ gη = C1

∂φ ′1
∂ t

+
p1

ρ1
+

1
2

[(
∂

∂x

(
U1x+φ

′
1
))2

+

(
∂

∂y

(
U1x+φ

′
1
))2

]
+ gη = C1

∂φ ′1
∂ t

+
p1

ρ1
+

1
2

[(
U1 +

∂φ ′1
∂x

)2

+

(
∂φ ′1
∂y

)2
]
+ gη = C1
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Linearize the above equation by neglecting the products of primed quantities, we get

∂φ ′1
∂ t

+
p1

ρ1
+

1
2

(
U2

1 +2U1
∂φ ′1
∂x

)
+ gη = C1

Solving for pressure

−p1 = ρ1

(
∂φ ′1
∂ t

+ 1
2U2

1 +U1
∂φ ′1
∂x

+ gη −C1

)
A similar transformation can be done for the second equation in (9) to obtain

−p2 = ρ2

(
∂φ ′2
∂ t

+ 1
2U2

2 +U2
∂φ ′2
∂x

+ gη −C2

)
Since p1 = p2 at y = η , the above two equations can be combined and the steady-flow relation

(11) is substituted to obtain

ρ1

(
∂φ ′1
∂ t

+ U1
∂φ ′1
∂x

+ gη

)
= ρ2

(
∂φ ′2
∂ t

+ U2
∂φ ′2
∂x

+ gη

)
at y = 0 (16)

The mathematical problem for η , φ ′1, and φ ′2 consists of equations (13) to (15).

Normal-mode analysis

One can solve the three linear equations (15) (two equations) and (16) and determine the three

functions η , φ ′1, and φ ′2, from which the stability of the system is found. All coefficients of the

three equations are constants, and hence we can carry out the normal-mode analysis.

The flow has been divided into a steady basic flow and a time-dependent perturbation. The

perturbation can be represented by a composition of the following normal-modes ansatz:

η = η̂eik(x−ct) (17)

φ
′
1 = φ̂1(y)eik(x−ct)

φ
′
2 = φ̂2(y)eik(x−ct) (18)

where k is real (and can be taken positive without any loss of generality), c = cr + ici is a

complex wave speed. Note that η̂ is the original amplitude of the interface displacement and

is a constant. It specifies the size of all perturbed quantities. When ci > 0, this displacement

is unstable and grows exponentially in time.

Substitution of normal modes (18) into Laplace equations (13) would allow us determine

the forms of the amplitude functions φ̂1 and φ̂2. For example, ∇2φ ′1 = 0 gives

∇
2
(

φ̂1eik(x−ct)
)
= 0

∂ 2

∂x2

(
φ̂1eik(x−ct)

)
+

∂ 2

∂y2

(
φ̂1eik(x−ct)

)
= 0

φ̂1
∂ 2

∂x2

(
eik(x−ct)

)
+ eik(x−ct)∂ 2φ̂1

∂y2 = 0
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−k2
φ̂1eik(x−ct) + eik(x−ct)∂ 2φ̂1

∂y2 = 0

eik(x−ct)
[

∂ 2φ̂1

∂y2 − k2
φ̂1

]
= 0

d2φ̂1

dy2 = k2
φ̂1

The above equation is a homogeneous second-order ODE with constant coefficients, and its

general solution is

φ̂1 = Ae−ky + C eky

and in a similar way, ∇2φ ′2 = 0 gives

φ̂2 = De−ky + Beky

where A, B, C, and D are integration constants. It can be seen that to satisfy the boundary

conditions (14), the constants C and D must be zero. Hence, the amplitude functions are of

the forms:
φ̂1 = Ae−ky

φ̂2 = Beky
(19)

Substitution of equation (19) into the equation (18) for normal modes for φ ′1 and φ ′2 gives

(equation for η is repeated below for convenience)

η = η̂eik(x−ct) (20)

φ
′
1 = Ae−kyeik(x−ct)

φ
′
2 = Bekyeik(x−ct) (21)

Substituting normal modes (20) and (21) into the interface kinematic conditions (15) yields

∂

∂y

(
Ae−kyeik(x−ct)

)
=

∂

∂ t

(
η̂eik(x−ct)

)
+ U1

∂

∂x

(
η̂eik(x−ct)

)
−kAe−kyeik(x−ct) = −ikcη̂eik(x−ct) + ikU1η̂eik(x−ct)

Ae−ky = −iη̂ (U1− c)

The above equation, when evaluated at y = 0, provides an equation for A. A similar equation

for B can also be obtained using the above procedure. Thus, we have

A = −i(U1− c) η̂

B = i(U2− c) η̂

(22)

The final equation is obtained by substituting equation (20) and (21) into dynamic interface

condition (Bernoulli equation) (16). This gives

ρ1

(
∂φ ′1
∂ t

+ U1
∂φ ′1
∂x

+ gη

)
= ρ2

(
∂φ ′2
∂ t

+ U2
∂φ ′2
∂x

+ gη

)
ρ1eik(x−ct)

(
−ikcAe−ky + ikU1Ae−ky + gη̂

)
= ρ2eik(x−ct)

(
−ikcBeky + ikU2Beky + gη̂

)
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At y = 0,

ρ1 [ik A(U1− c) + gη̂ ] = ρ2 [ik B(U2− c) + gη̂ ]

Substituting for A and B to obtain

ρ1

[
k (U1− c)2

η̂ + gη̂

]
= ρ2

[
−k (U2− c)2

η̂ + gη̂

]
Rearranging

ρ1k (U1− c)2 + ρ2k (U2− c)2 = g(ρ2−ρ1) (23)

Equation (23) gives the eigenvalue relation for c(k). Solving this equation for the complex wave

speed:

c = cr + ici =
ρ1U1 + ρ2U2

ρ1 + ρ2
±

[
g
k

ρ2 − ρ1

ρ1 + ρ2
− ρ1ρ2

(
U1 −U2

ρ1 + ρ2

)2
]1/2

(24)

It can be seen that the wave speed c is real (ci = 0) if term within the square root is positive.

Hence, both solutions are neutrally stable if

g
k

ρ2 − ρ1

ρ1 + ρ2
≥ ρ1ρ2

(
U1 −U2

ρ1 + ρ2

)2

k ≤ g
ρ1ρ2

ρ2
2 −ρ2

1

(U1−U2)
2 (25)

which gives the stable waves of the system. On the other hand, the flow (solution) is unstable

if ci > 0. That is,

k >
g

ρ1ρ2

ρ2
2 −ρ2

1

(U1−U2)
2 (26)

Equation (24) shows that for each amplified (unstable) solution there exists an associated

damped (stable) solution. This behavior is due to the fact that the coefficients of the pertur-

bation differential equation and the boundary conditions are all real. If U1 6=U2, then one can

always find a large enough k that satisfies the requirement for instability. Because all wave-

lengths must be allowed in an instability analysis, we can say that the flow is always unstable

to short waves if U1 6=U2.

It is instructive to note that the dispersion relation of waves at the interface between

two immiscible liquids of different densities can be obtained from equation (24) by setting

U1 =U2 = 0:

c =

√
g
k

ρ2 − ρ1

ρ1 + ρ2
(27)

or the circular frequency

ω =
√

gk At (28)

where At = (ρ2 − ρ1)/(ρ1 + ρ2), is the Atwood number.

6



Consider now the special case of a vortex sheet, i.e., the flow of a homogeneous fluid

(ρ1 = ρ2) with a velocity discontinuity. Setting ρ1 = ρ2 = ρ in equation (24) gives

c = cr + ici = ρ
2U1 + U2

2ρ2 ±

[
−ρ

2 (U1 −U2)
2

4ρ2

]1/2

c = cr + ici =
1
2
(U1 + U2) ± i

1
2
|U1 −U2| (29)

As we have discussed earlier, a flow of vortex sheet with ci > 0 is unstable. Thus the vortex

sheet (sheer layer) of a velocity jump in the interface is unstable for all wavelengths.

It is also seen that the perturbation waves move with a phase velocity equal to the average

velocity of the basic flow 1
2(U1 + U2). This must be true from symmetry considerations. In

a frame of reference moving with the average velocity, the basic flow is symmetric and the

wave therefore should have no preference between the positive and negative directions. The

Kelvin–Helmholtz instability is caused by the destabilizing effect of friction, which overcomes

the stabilizing effect of density stratification. The Kelvin–Helmholtz instability is commonly

found in Earth’s atmosphere and ocean (see figure below).

Figure 2: A Kelvin–Helmholtz instability rendered visible by clouds over Mount Duval in Australia

(image taken from Wikipedia)
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