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1 Second-Order Partial Differential Equation

The most general case of second-order linear partial differential equation (PDE) in two inde-

pendent variables is given by

A
∂ 2u

∂x2
+ B

∂ 2u

∂x∂y
+ C

∂ 2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = G (1)

where the coefficients A, B, and C are functions of x and y and do not vanish simultaneously,

because in that case the second-order PDE degenerates to one of first order. Further, the

coefficients D, E, and F are also assumed to be functions of x and y. We shall assume that the

function u(x,y) and the coefficients are twice continuously differentiable in some domain Ω.

The classification of second-order PDE depends on the form of the leading part of the

equation consisting of the second order terms. So, for simplicity of notation, we combine the

lower order terms and rewrite the above equation in the following form

A(x,y)
∂ 2u

∂x2
+ B(x,y)

∂ 2u

∂x∂y
+ C(x,y)

∂ 2u

∂y2
= Φ

(

x,y,u,
∂u

∂x
,
∂u

∂y

)

(2a)

or using the short-hand notations for partial derivatives,

A(x,y)uxx + B(x,y)uxy + C(x,y)uyy = Φ(x,y,u,ux,uy) (2b)

As we shall see, there are fundamentally three types of PDEs – hyperbolic, parabolic, and

elliptic PDEs. From the physical point of view, these PDEs respectively represents the wave

propagation, the time-dependent diffusion processes, and the steady state or equilibrium pro-

cesses. Thus, hyperbolic equations model the transport of some physical quantity, such as

fluids or waves. Parabolic problems describe evolutionary phenomena that lead to a steady

state described by an elliptic equation. And elliptic equations are associated to a special state

of a system, in principle corresponding to the minimum of the energy.

Mathematically, these classification of second-order PDEs is based upon the possibility of

reducing equation (2) by coordinate transformation to canonical or standard form at a point. It

may be noted that, for the purposes of classification, it is not necessary to restrict consideration
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to linear equations. It is applicable to quasilinear second-order PDE as well. A quasilinear

second-order PDE is linear in the second derivatives only.

The type of second-order PDE (2) at a point (x0,y0) depends on the sign of the discriminant

defined as

∆(x0,y0) ≡
∣

∣

∣

∣

B 2A

2C B

∣

∣

∣

∣

= B(x0,y0)
2 − 4A(x0,y0)C(x0,y0) (3)

The classification of second-order linear PDEs at the point (x0,y0) is given by the following

conditions: If ∆(x0,y0)> 0, the equation is hyperbolic, ∆(x0,y0) = 0 the equation is parabolic,

and ∆(x0,y0) < 0 the equation is elliptic. It should be remarked here that a given PDE may

be of one type at a specific point, and of another type at some other point. For example, the

Tricomi equation
∂ 2u

∂x2
+ x

∂ 2u

∂y2
= 0

is hyperbolic in the left half-plane x < 0, parabolic for x = 0, and elliptic in the right half-plane

x > 0, since ∆ = −4x. A PDE is hyperbolic (or parabolic or elliptic) in a region Ω if the PDE

is hyperbolic (or parabolic or elliptic) at each point of Ω.

The terminology hyperbolic, parabolic, and elliptic chosen to classify PDEs reflects the anal-

ogy between the form of the discriminant, B2−4AC, for PDEs and the form of the discriminant,

B2 −4AC, which classifies conic sections given by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

The type of the curve represented by the above conic section depends on the sign of the

discriminant, ∆ ≡ B2−4AC. If ∆ > 0, the curve is a hyperbola, ∆ = 0 the curve is an parabola,

and ∆ < 0 the equation is a ellipse. The analogy of the classification of PDEs is obvious. There

is no other significance to the terminology and thus the terms hyperbolic, parabolic, and elliptic

are simply three convenient names to classify PDEs.

In order to illustrate the significance of the discriminant ∆ and thus the classification of the

PDE (2), we try to reduce the given equation (2) to a canonical form. To do this, we transform

the independent variables x and y to the new independent variables ξ and η through the change

of variables

ξ = ξ (x,y), η = η(x,y) (4)

where both ξ and η are twice continuously differentiable and that the Jacobian

J =
∂ (ξ ,η)

∂ (x,y)
=

∣

∣

∣

∣

ξx ξy

ηx ηy

∣

∣

∣

∣

6= 0 (5)

in the region under consideration. The nonvanishing of the Jacobian of the transformation

ensure that a one-to-one transformation exists between the new and old variables. This simply

means that the new independent variables can serve as new coordinate variables without any

ambiguity. Now, define w(ξ ,η) = u(x(ξ ,η),y(ξ ,η)). Then u(x,y) = w(ξ (x,y),η(x,y)) and,
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apply the chain rule to compute the terms of the equation (2) in terms of ξ and η as follows:

ux = wξ ξx + wη ηx

uy = wξ ξy + wη ηy

uxx = wξξ ξ 2
x + 2wξη ξxηx + wηη η2

x + wξ ξxx + wη ηxx (6)

uyy = wξξ ξ 2
y + 2wξη ξyηy + wηη η2

y + wξ ξyy + wη ηyy

uxy = wξξ ξxξy + wξη(ξxηy +ξyηx) + wηη ηxηy + wξ ξxy + wη ηxy

Substituting these expressions into equation (2) we obtain the transformed PDE as

awξξ + bwξη + cwηη = φ
(

ξ ,η,w,wξ ,wη

)

(7)

where Φ becomes φ and the new coefficients of the higher order terms a, b, and c are expressed

via the original coefficients and the change of variables formulas as follows:

a = Aξ 2
x + Bξxξy + Cξ 2

y

b = 2Aξxηx + B(ξxηy +ξyηx) + 2Cξyηy (8)

c = Aη2
x + Bηxηy + Cη2

y

At this stage the form of the PDE (7) is no simpler than that of the original PDE (2), but this

is to be expected because so far the choice of the new variable ξ and η has been arbitrary.

However, before showing how to choose the new coordinate variables, observe that equation

(8) can be written in matrix form as

[

a b/2

b/2 c

]

=

[

ξx ξy

ηx ηy

][

A B/2

B/2 C

][

ξx ξy

ηx ηy

]T

Recalling that the determinant of the product of matrices is equal to the product of the de-

terminants of matrices and that the determinant of a transpose of a matrix is equal to the

determinant of that matrix, we get

∣

∣

∣

∣

a b/2

b/2 c

∣

∣

∣

∣

=

∣

∣

∣

∣

A B/2

B/2 C

∣

∣

∣

∣

J2

where J is the Jacobian of the change of variables given by (5). Expanding the determinant

and multiplying by the factor, −4, to obtain

b2 − 4ac = J2(B2 −4AC) =⇒ δ = J2∆ (9)

where δ = b2 − 4ac is the discriminant of the transformed PDE (7). This shows that the

discriminant of the transformed PDE (7) has the same sign as the discriminant of the original

PDE (2) and therefore it is clear that any real nonsingular (J 6= 0) transformation does not

change the type of PDE. Note that the discriminant involves only the coefficients of second-

order derivatives of the corresponding PDE.
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1.1 Canonical forms

Let us now try to construct transformations, which will make one, or possibly two of the

coefficients of the leading second order terms of equation (7) vanish, thus reducing the equation

to a simpler form called canonical from. For convenience, we reproduce below the original PDE

A(x,y)uxx + B(x,y)uxy + C(x,y)uyy = Φ(x,y,u,ux,uy) (2)

and the corresponding transformed PDE

a(ξ ,η)wξξ + b(ξ ,η)wξη + c(ξ ,η)wηη = φ
(

ξ ,η,w,wξ ,wη

)

(7)

We again mention here that for the PDE (2) (or (7)) to remain a second-order PDE, the

coefficients A, B, and C (or a, b, and c) do not vanish simultaneously.

By definition, a PDE is hyperbolic if the discriminant ∆ = B2 −4AC > 0. Since the sign of

discriminant is invariant under the change of coordinates (see equation (9)), it follows that for

a hyperbolic PDE, we should have b2 −4ac > 0. The simplest case of satisfying this condition

is a = c = 0. So, if we try to chose the new variables ξ and η such that the coefficients a and

c vanish, we get the following canonical form of hyperbolic equation:

wξη = ψ
(

ξ ,η,w,wξ ,wη

)

(10a)

where ψ = φ/b. This form is called the first canonical form of the hyperbolic equation. We

also have another simple case for which b2 − 4ac > 0 condition is satisfied. This is the case

when b = 0 and c =−a. In this case (9) reduces to

wαα − wββ = ψ
(

α,β ,w,wα ,wβ

)

(10b)

which is the second canonical form of the hyperbolic equation, where ψ = φ/a.

By definition, a PDE is parabolic if the discriminant ∆ = B2 −4AC = 0. It follows that for

a parabolic PDE, we should have b2−4ac = 0. The simplest case of satisfying this condition is

c(or a) = 0. In this case another necessary requirement b = 0 will follow automatically (since

b2 −4ac = 0). So, if we try to chose the new variables ξ and η such that the coefficients b

and c vanish, we get the following canonical form of parabolic equation:

wξξ = ψ
(

ξ ,η,w,wξ ,wη

)

(11)

where ψ = φ/a.

By definition, a PDE is elliptic if the discriminant ∆ = B2 − 4AC < 0. It follows that for

a elliptic PDE, we should have b2 −4ac < 0. The simplest case of satisfying this condition is

b = 0 and c = a. So, if we try to chose the new variables ξ and η such that b vanishes and

c = a, we get the following canonical form of elliptic equation:

wξξ + wηη = ψ
(

ξ ,η,w,wξ ,wη

)

(12)

where ψ = φ/a.

In summary, equation (7) can be reduced to a canonical form if the coordinate transformation

ξ = ξ (x,y) and η = η(x,y) can be selected such that:
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• a = c = 0 corresponds to the first canonical form of hyperbolic PDE given by

wξη = ψ
(

ξ ,η,w,wξ ,wη

)

(10a)

• b = 0, c =−a corresponds to the second canonical form of hyperbolic PDE given by

wαα − wββ = ψ
(

α,β ,w,wα ,wβ

)

(10b)

• b = c = 0 corresponds to the canonical form of parabolic PDE given by

wξξ = ψ
(

ξ ,η,w,wξ ,wη

)

(11)

• b = 0, c = a corresponds to the canonical form of elliptic PDE given by

wξξ + wηη = ψ
(

ξ ,η,w,wξ ,wη

)

(12)

We will now examine the kind of transformation required to reduce the PDE to its canonical

form.

1.2 Hyperbolic equations

For a hyperbolic PDE the discriminant ∆(= B2−4AC)> 0. In this case, we have seen that, to

reduce this PDE to canonical form we could choose the new variables ξ and η such that the

coefficients a and c vanish in (7). Thus, from (8), we have

a = Aξ 2
x + Bξxξy + Cξ 2

y = 0 (13a)

c = Aη2
x + Bηxηy + Cη2

y = 0 (13b)

Dividing equation (13a) and (13b) throughout by ξ 2
y and η2

y respectively to obtain

A

(

ξx

ξy

)2

+ B

(

ξx

ξy

)

+ C = 0 (14a)

A

(

ηx

ηy

)2

+ B

(

ηx

ηy

)

+ C = 0 (14b)

Equation (14a) is a quadratic equation for the ratio (ξx/ξy) whose roots are given by

µ1(x,y) =
−B+

√
B2 −4AC

2A

µ2(x,y) =
−B−

√
B2 −4AC

2A
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The roots of the equation (14b) can also be found in an identical manner, so as only two distinct

roots are possible between the two equations (14a) and (14b). Hence, we may consider µ1 as

the first root of (14a) and µ2 as the second root of (14b). That is,

µ1(x,y) =
ξx

ξy
=

−B+
√

B2 −4AC

2A
(15a)

µ2(x,y) =
ηx

ηy
=

−B−
√

B2 −4AC

2A
(15b)

The above equations lead to the following two first-order differential equations

ξx − µ1(x,y)ξy = 0 (16a)

ηx − µ2(x,y)ηy = 0 (16b)

These are the equations that define the new coordinate variables ξ and η that are necessary

to make a = c = 0 in (7).

Along the coordinate line ξ (x,y) = constant, we have the total derivative of ξ , dξ = 0. It

follows that

dξ = ξxdx + ξydy = 0

and hence, the slope of such curves is given by

dy

dx
= −ξx

ξy

We also have a similar result along coordinate line η(x,y) = constant, i.e.,

dy

dx
= −ηx

ηy

Using these results, equation (14) can be written as

A

(

dy

dx

)2

− B

(

dy

dx

)

+ C = 0 (17)

This is called the characteristic polynomial of the PDE (2) and its roots are given by

dy

dx
=

B+
√

B2 −4AC

2A
= λ1(x,y) (18a)

dy

dx
=

B−
√

B2 −4AC

2A
= λ2(x,y) (18b)

The required variables ξ and η are determined by the respective solutions of the two ordinary

differential equations (18a) and (18b), known as the characteristic equations of the PDE (2).

They are ordinary differential equations for families of curves in the xy-plane along which ξ =

constant and η = constant. Clearly, these families of curves depend on the coefficients A, B,

and C in the original PDE (2).
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Integration of equation (18a) leads to the family of curvilinear coordinates ξ (x,y) = c1 while

the integration of (18b) gives another family of curvilinear coordinates η(x,y) = c2, where c1

and c2 are arbitrary constants of integration. These two families of curvilinear coordinates

ξ (x,y) = c1 and η(x,y) = c2 are called characteristic curves of the hyperbolic equation (2) or,

more simply, the characteristics of the equation. Hence, second-order hyperbolic equations have

two families of characteristic curves. The fact that ∆ > 0 means that the characteristic are real

curves in xy-plane.

If the coefficients A, B, and C are constants, it is easy to integrate equations (18a) and

(18b) to obtain the expressions for change of variables formulas for reducing a hyperbolic PDE

to the canonical form. Thus, integration of (18) produces

y =
B+

√
B2 −4AC

2A
x + c1 and y =

B−
√

B2 −4AC

2A
x + c2 (19a)

or

y − B+
√

B2 −4AC

2A
x = c1 and y − B−

√
B2 −4AC

2A
x = c2 (19b)

Thus, when the coefficients A, B, and C are constants, the two families of characteristic curves

associated with PDE reduces to two distinct families of parallel straight lines. Since the families

of curves ξ = constant and η = constant are the characteristic curves, the change of variables

are given by the following equations:

ξ = y − B+
√

B2 −4AC

2A
x = y − λ1x (20)

η = y − B−
√

B2 −4AC

2A
x = y − λ2x (21)

The first canonical form of the hyperbolic is:

wξη = ψ
(

ξ ,η,w,wξ ,wη

)

(22)

where ψ = φ/b and b is calculated from (8)

b = 2Aξxηx + B(ξxηy +ξyηx) + 2Cξyηy

= 2A

(

B2 − (B2 −4AC)

4A2

)

+ B

(

− B

2A
− B

2A

)

+ 2C

= 4C − B2

A
= −∆

A
(23)

Each of the families ξ (x,y) = constant and η(x,y) = constant forms an envelop of the domain

of the xy-plane in which the PDE is hyperbolic.

The transformation ξ = ξ (x,y) and η = η(x,y) can be regarded as a mapping from the

xy-plane to the ξ η-plane, and the curves along which ξ and η are constant in the xy-plane

become coordinates lines in the ξ η-plane. Since these are precisely the characteristic curves,

we conclude that when a hyperbolic PDE is in canonical form, coordinate lines are characteristic
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curves for the PDE. In other words, characteristic curves of a hyperbolic PDE are those curves

to which the PDE must be referred as coordinate curves in order that it take on canonical form.

We now determine the Jacobian of transformation defined by (20) and (21). We have

J =

∣

∣

∣

∣

−λ1 1

−λ2 1

∣

∣

∣

∣

= λ2 − λ1

We know that λ1 = λ2 only if B2 −4AC = 0. However, for an hyperbolic PDE, B2 −4AC 6= 0.

Hence Jacobian is nonsingular for the given transformation. A consequence of λ1 6= λ2 is that

at no point can the particular curves from each family share a common tangent line.

It is easy to show that the hyperbolic PDE has a second canonical form. The following

linear change of variables

α = ξ + η, β = ξ − η

converts (22) into

wαα − wββ = ψ
(

α,β ,w,wα ,wβ

)

(24)

which is the second canonical form of the hyperbolic equations.

For PDE with constant coefficients, the required transformation is given by

α = ξ + η = (y−λ1x) + (y−λ2x)

= 2y − (λ1+λ2)x

β = ξ − η = (y−λ1x) − (y−λ2x)

= (λ2 +λ1)x

Example 1

Show that the one-dimensional wave equation

∂ 2u

∂ t2
− c2 ∂ 2u

∂x2
= 0

is hyperbolic, find an equivalent canonical form, and then obtain the general solution.

Solution To interpret the results for (2) that involve the independent variables x and y in

terms of the wave equation utt −c2uxx = 0, where the independent variables are t and x, it will

be necessary to replace x and y in (2) and (6) by t and x. It follows that the wave equation is

a constant coefficient equation with

A = 1, B = 0, C = −c2

We calculate the discriminant, ∆ = 4c2 > 0, and therefore the PDE is hyperbolic. The roots of

the characteristic polynomial are given by

λ1 =
B+

√
∆

2A
= c and λ2 =

B−
√

∆

2A
= −c
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Therefore, from the characteristic equations (18a) and (18b), we have

dx

dt
= λ1 = c,

dx

dt
= λ2 = −c

Integrating the above two ODEs to obtain the characteristics of the wave equation

x = ct + k1, x = −ct + k2

where k1 and k2 are the constants of integration. We see that the two families of characteristics

for the wave equation are given by x− ct = constant and x+ ct = constant. It follows, then,

that the transformation

ξ = x − ct, η = x + ct

reduces the wave equation to canonical form. We have,

a = 0, c = 0, b = −∆

A
= −4c2

So in terms of characteristic variables, the wave equation reduces to the following canonical

form

wξη = 0

For the wave equation the characteristics are found to be straight lines with negative and

positive slopes as shown in Fig. 1. The characteristics form a natural set of coordinates for the

hyperbolic equation.

b x

t

x− ct = kx+ ct = k

k

Figure 1: The pair of characteristic curves for wave equation.

The canonical forms are simple because they can be solved directly by integrating twice.

For example, integrating with respect to ξ gives

wη =
∫

0dξ = h(η)

where the ‘constant of integration’ h is an arbitrary function of η. Next, integrating with

respect to η to obtain

w(ξ ,η) =
∫

h(η)dη + f (ξ ) = f (ξ ) + g(η)

9



where f and g are arbitrary twice differentiable functions and g is just the integral of the

arbitrary function h. The form of the general solutions of the wave equation in terms of its

original variable x and t are then given by

u = f (x− ct) + g(x+ ct)

Note that f is constant on “wavefronts” x = ct + ξ that travel towards right, whereas g is

constant on wavefronts x = −ct +η that travel towards left. Thus, any general solution of

wave equation can be expressed as the sum of two waves, one travelling to the right with

constant velocity c and the other travelling to the left with the same velocity c. This is one of

the few cases where the general solution of a PDE can be found.

As mentioned earlier, hyperbolic PDE has an alternate canonical form with the following

linear change of variables α = ξ +η and β = ξ −η, given by

wαα − wββ = 0

Example 2

In steady or unsteady transonic flow around wings and airfoils with thickness to chord ratios

of a few percent, we can generally consider that the flow is predominantly directed along

the chordwise direction, taken as the x-direction. In this case, the velocities in the transverse

direction can be neglected and the potential equation reduces to the so-called small disturbance

potential equation:
(

1−M2
∞

) ∂ 2φ

∂x2
+

∂ 2φ

∂y2
= 0

Historically, this was the form of equation used by Murman and Cole (1961) to obtain the first

numerical solution for a transonic flow around an airfoil with shocks.

Show that, depending on the Mach number, the small disturbance potential equation is

elliptic, parabolic, or hyperbolic. Find the characteristic variables for the hyperbolic case and

hence write the equation in canonical form.

Solution The given equation is of the form (2) where

A = 1−M2
∞, B = 0, C = 1

The discriminant, ∆ = B2 −4AC =−4(1−M2
∞). Therefore, the PDE is hyperbolic for M > 1,

elliptic for M < 1, and parabolic for M = 1 (along the sonic line). For the case of supersonic

flow (M > 1), the roots of the characteristic polynomial are given by

λ1 =
B+

√
∆

2A
=

√

4(M2
∞−1)

2(1−M2
∞)

= − 1
√

M2
∞ −1

λ2 =
B−

√
∆

2A
= −

√

4(M2
∞ −1)

2(1−M2
∞)

=
1

√

M2
∞ −1
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Therefore, from the characteristic equations (18a) and (18b), we have

dy

dx
= λ1 =

1
√

M2
∞ −1

,
dy

dx
= λ2 = − 1

√

M2
∞−1

Integrating the above two ODEs to obtain the characteristics of the wave equation

y =
x

√

M2
∞ −1

+ c1, y = − x
√

M2
∞ −1

+ c2

where c1 and c2 are the constants of integration. We see that the two families of characteristics

for the wave equation are given by y−x/
√

M2
∞ −1 = constant and y+x/

√

M2
∞ −1 = constant.

It follows, then, that the transformation

ξ = y − x
√

M2
∞−1

, η = y +
x

√

M2
∞−1

reduces the wave equation to canonical form. From the relations (6), we have

φxx = wξξ ξ 2
x + 2wξη ξxηx + wηη η2

x + wξ ξxx + wη ηxx

=
1

M2
∞ −1

wξξ − 2

M2
∞ −1

wξη +
1

M2
∞ −1

wηη

φyy = wξξ ξ 2
y + 2wξη ξyηy + wηη η2

y + wξ ξyy + wη ηyy

= wξξ + 2wξη + wηη

Substituting these relations in the given PDE to obtain

wξη = 0

This is the canonical form of the given hyperbolic PDE. Here ξ = const. and η = const. lines

represent two families of straight lines with slopes, ±1/
√

M2
∞ −1.

1.3 Parabolic equations

For a parabolic PDE the discriminant ∆ = B2 −4AC = 0. In this case, we have seen that, to

reduce this PDE to canonical form we need to choose the new variables ξ and η such that the

coefficients a and b vanish in (7). Thus, from (8), we have

a = Aξ 2
x + Bξxξy + Cξ 2

y = 0

Dividing the above equation throughout by ξ 2
y to obtain

A

(

ξx

ξy

)2

+ B

(

ξx

ξy

)

+ C = 0 (25)

As the total derivative of ξ along the coordinate line ξ (x,y) = const., dξ = 0. It follows that

dξ = ξxdx + ξydy = 0
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and hence, the slope of such curves is given by

dy

dx
= −ξx

ξy

Using this result, equation (25) can be written as

A

(

dy

dx

)2

− B

(

dy

dx

)

+ C = 0 (26)

This is called the characteristic polynomial of the PDE (2). Since B2 −4AC = 0 in this case,

the characteristic polynomial (25) has only one root, given by

dy

dx
=

B

2A
= λ (x,y) (27)

Hence we see that for a parabolic PDE there is only one family of real characteristic curves.

The required variables ξ is determined by the ordinary differential equation (27), known as the

characteristic equations of the PDE (2). This is an ordinary differential equation for families of

curves in the xy-plane along which ξ = constant.

To determine the second transformation variable η, we set b = 0 in (8) so that

2Aξxηx + Bξxηy +ξyηx) + 2Cξyηy = 0

2A
ξx

ξy
ηx + B

(

ξx

ξy
ηy +ηx

)

+ 2Cηy = 0

2A

(

− B

2A

)

ηx + B

[(

− B

2A

)

ηy +ηx

]

+ 2Cηy = 0

−Bηx −
B2

2A
ηy + Bηx + 2Cηy = 0
(

B2 −4AC
)

ηy = 0

Since B2 −4AC = 0 for a parabolic PDE, ηy could be an arbitrary function of (x,y) and con-

sequently the transformation variable η can be chosen arbitrarily, as long as the change of

coordinates formulas define a non-degenerate transformation.

If the coefficients A, B, and C are constants, it is easy to integrate equation (27) to obtain

the expressions for change of variable formulas for reducing a parabolic PDE to the canonical

form. Thus, integration of (27) produces

y =
B

2A
x + c1 (28a)

or

y − B

2A
x = c1 (28b)

Since the families of curves ξ = constant are the characteristic curves, the change of variables

are given by the following equations:

ξ = y − B

2A
x (29)

η = x (30)

12



where we have set η = x. The Jacobian of this transformation is

J =

∣

∣

∣

∣

ξx ξy

ηx ηy

∣

∣

∣

∣

=

∣

∣

∣

∣

−B/2A 1

1 0

∣

∣

∣

∣

= −1 6= 0

Now, we have from (8)

b = 2Aξxηx + B(ξxηy +ξyηx) + 2Cξyηy

= 2A

(

− B

2A

)

+ B + 0 = 0

In these new coordinate variables given by (29) and (30), equation (7) reduces to following

canonical form:

wηη = ψ
(

ξ ,η,w,wξ ,wη

)

(31)

where ψ = φ/c. As the choice of η is arbitrary, the form taken by ψ will depend on the choice

of η. We have from (8)

c = Aη2
x + Bηxηy + Cη2

y = A (32)

Equation (7) may also assume the form

wξξ = ψ
(

ξ ,η,w,wξ ,wη

)

(33)

if we choose c = 0 instead of a = 0.

Example 3

Show that the one-dimensional heat equation

α
∂ 2u

∂x2
=

∂u

∂ t

is parabolic, choose the appropriate characteristic variables, and write the equation in equivalent

canonical form.

Solution It follows that the heat equation is a constant coefficient equation with

A = α, B = 0, C = 0

We calculate the discriminant, ∆ = 0, and therefore the PDE is parabolic. The single root of

the characteristic polynomial is given by

λ = B/2A = 0

Therefore, from the characteristic equation (27), we have

dt

dx
= 0

13



Integrating the above ODE to obtain the characteristics of the wave equation

t = k

where k is the constant of integration. Here t = k lines represents the characteristics. Since the

families of curves ξ = constant are the characteristic curves, the change of variables are given

by the following equations:

ξ = t, η = x

where we have set η = x. This shows that the given PDE is already expressed in canonical form

and thus no change of variable is needed to simplify the structure. Further, we have from (6)

ut = wξ ξt + wη ηt = wξ

and c = A = α . It follows that the canonical form of the heat equation is given by

wηη =
1

α
wξ

1.4 Elliptic equations

For an elliptic PDE the discriminant ∆ = B2 − 4AC < 0. In this case, we have seen that, to

reduce this PDE to canonical form we need to choose the new variables ξ and η to produce

b = 0 and a = c, or b = 0 and a− c = 0. Then, from (8) we obtain the following equations:

A
(

ξ 2
x −η2

x

)

+ B(ξxξy −ηxηy) + C
(

ξ 2
y −η2

y

)

= 0 (34a)

2Aξxηx + B(ξxηy +ξyηx) + 2Cξyηy = 0 (34b)

For hyperbolic and parabolic PDEs, ξ and η are satisfied by equations that are not coupled

each other (see (13) and (25)). However, equations (34) are coupled since both unknowns ξ

and η appear in both equations. In an attempt to separate them, we add the first of these

equation to complex number i times the second to give

A(ξx + iηx)
2 + B(ξx + iηx)(ξy+ iηy) + C (ξy + iηy)

2 = 0

Dividing the above equation throughout by (ξy + iηy)
2 to obtain

A

(

ξx + iηx

ξy + iηy

)2

+ B

(

ξx + iηx

ξy + iηy

)

+ C = 0 (35)

This equation can be solved for two possible values of the ratio

ξx + iηx

ξy + iηy

=
−B±

√
B2 −4AC

2A
=

−B± i
√

4AC−B2

2A
(36)
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Clearly, these two roots are complex conjugates and are given by

αx

αy
=

−B+ i
√

4AC−B2

2A
(37a)

βx

βy

=
−B− i

√
4AC−B2

2A
(37b)

where β (x,y) is the complex conjugate of α(x,y). They are given by

α(x,y) = ξ (x,y)+ iη(x,y) (38a)

β (x,y) = ξ (x,y)− iη(x,y) (38b)

We will now proceed in a purely formal fashion. As the total derivative of α along the coordinate

line α(x,y) = constant, dα = 0. It follows that

dα = αxdx + αydy = 0

and hence, the slope of such curves is given by

dy

dx
= −αx

αy

We also have a similar result along coordinate line β (x,y) = constant, i.e.,

dy

dx
= −βx

βy

From the foregoing discussion it follows that

dy

dx
= λ1 =

B− i
√

4AC−B2

2A
(39a)

dy

dx
= λ2 =

B+ i
√

4AC−B2

2A
(39b)

Equations (39a) and (39b) are called the characteristic equation of the PDE (2). Clearly, the

solution of this differential equations are necessarily complex-valued and as a consequence there

are no real characteristic exist for an elliptic PDE.

The complex variables α and β are determined by the respective solutions of the two

ordinary differential equations (39a) and (39b). Integration of equation (39a) leads to the

family of curvilinear coordinates α(x,y) = c1 while the integration of (39b) gives another family

of curvilinear coordinates β (x,y) = c2, where c1 and c2 are complex constants of integration.

Since α and β are complex function the characteristic curves of the elliptic equation (2) are

not real.

Now the real and imaginary parts of α and β give the required transformation variables ξ

and η. Thus, we have

ξ =
α +β

2
η =

α −β

2i
(40)
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With the choice of coordinate variables (40), equation (7) reduces to following canonical form:

wξξ + wηη = ψ
(

ξ ,η,w,wξ ,wη

)

(41)

where ψ = φ/a.

Note: It may be noted that the quasilinear second-order equations in two independent variables

can also be classified in a similar way according to rule analogous to those developed above for

semilinear equations. However, since A, B, and C are now functions of ux, uy, and u its type

turns out to depend in general on the particular solution searched and not just on the values

of the independent variables.

Example 4

Show that the equation

uxx + x2uyy = 0

is elliptic everywhere except on the coordinate axis x = 0, find the characteristic variables and

hence write the equation in canonical form.

Solution The given equation is of the form (2) where

A = 1, B = 0, C = x2

The discriminant, ∆ = B2 −4AC =−4x2 < 0 for x 6= 0, and therefore the PDE is elliptic. The

roots of the characteristic polynomial are given by

λ1 =
B− i

√
4AC−B2

2A
= −ix and λ2 =

B+ i
√

4AC−B2

2A
= ix

Therefore, from the characteristic equations (18a) and (18b), we have

dy

dx
= −ix,

dy

dx
= ix

Integrating the above two ODEs to obtain the characteristics of the wave equation

y = −i
x2

2
+ c1, y = i

x2

2
+ c2

where c1 and c2 are the complex constants. We see that the two families of complex charac-

teristics for the elliptic equation are given by y+ ix2/2 = constant and y− ix2/2 = constant. It

follows, then, that the transformation

α = y + i
x2

2
, β = y − i

x2

2

The real and imaginary parts of α and β give the required transformation variables ξ and η.

Thus, we have

ξ =
α +β

2
= y η =

α −β

2i
=

x2

2
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With this choice of coordinate variables, equation (7) reduces to following canonical form. From

the relations (6), we have

uxx = wξξ ξ 2
x + 2wξη ξxηx + wηη η2

x + wξ ξxx + wη ηxx

= x2wηη + wη

uyy = wξξ ξ 2
y + 2wξη ξyηy + wηη η2

y + wξ ξyy + wη ηyy

= wξξ

Substituting these relations in the given PDE and noting that x2 = 2η, we obtain

wξξ + wηη = − 1

2η
wη

This is the canonical form of the given hyperbolic PDE. Therefore, the PDE

uxx + x2uyy = 0

in rectangular coordinate system (x,y) has been transformed to PDE

wξξ + wηη = − 1

2η
wη

in curvilinear coordinate system (ξ ,η). Here ξ = const. lines represents a family of straight

lines parallel to x axis and η = const. lines represents family of parabolas.

Example 5

Consider the Tricomi equation

uxx − xuyy = 0

This is simple model of a second-order PDE of mixed elliptic-hyperbolic type with two inde-

pendent variables. The Tricomi equation is a prototype of the Chaplygin’s equation for study

of transonic flow.

The Tricomi equation is of the form (2) where

A = 1, B = 0, C = −x

The discriminant, ∆ = B2−4AC = 4x. Therefore, the Tricomi equation is hyperbolic for x > 0,

elliptic for x < 0 and degenerates to an equation of parabolic type on the line x = 0. Assuming

x > 0, the roots of the characteristic polynomial are given by

λ1 =
B+

√
∆

2A
=

√
x and λ2 =

B−
√

∆

2A
= −

√
x

Therefore, from the characteristic equations (18a) and (18b), we have

dy

dx
=

√
x,

dy

dx
= −

√
x

17



Integrating the above two ODEs to obtain the characteristics of the wave equation

y = 2
3
x3/2 + c1, y = −2

3
x3/2 + c2

where c1 and c2 are the constants of integration. We see that the two families of characteristics

for the wave equation are given by y−2/(3x3/2) = constant and y+2/(3x3/2) = constant. It

follows, then, that the transformation

ξ = y − 2
3
x3/2, η = y + 2

3
x3/2

reduces the wave equation to canonical form. The derivatives of ξ and η are given by

ξx = −√
x ξy = 1

ξxx = − 1
2
√

x
ξyy = 0

ηx =
√

x ηy = 1

ηxx = 1
2
√

x
ηyy = 0

From the relations (6), we have

uxx = wξξ ξ 2
x + 2wξη ξxηx + wηη η2

x + wξ ξxx + wη ηxx

= xwξξ − 2xwξη + xwηη − 1

2
√

x
wξ +

1

2
√

x
wη

uyy = wξξ ξ 2
y + 2wξη ξyηy + wηη η2

y + wξ ξyy + wη ηyy

= wξξ + 2wξη + wηη

We also have the following relation

x3/2 =
3(η −ξ )

4

Substituting these relations in the given PDE to obtain

wξη =
1

6

wξ −wη

ξ −η

This is the canonical form of the Tricomi equation in the hyperbolic region.

Example 6

An interesting example is provided by the stationary potential flow equation in two dimensions,

defined by equation (where c designates the speed of sound):

(

1− u2

c2

)

∂ 2φ

∂x2
− 2

uv

c2

∂ 2φ

∂x∂y
+

(

1− v2

c2

)

∂ 2φ

∂y2
= 0

with

A =

(

1− u2

c2

)

, B = −2
uv

c2
, C =

(

1− v2

c2

)
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we can write the potential equation under the form (2). In this particular case the discriminant

(B2 −4AC) becomes, introducing the Mach number, M(=
√

u2 + v2/c)

B2 −4AC = 4

(

u2 + v2

c2
− 1

)

= 4
(

M2 −1
)

and hence the stationary potential equation is elliptic for subsonic flows and hyperbolic for

supersonic flows. Along the sonic line M = 1, the equation is parabolic. This mixed nature of the

potential equation has been a great challenge for the numerical computation of transonic flows

since the transition line between the subsonic and the supersonic regions is part of the solution.

An additional complication arises from the presence of shock waves which are discontinuities of

the potential derivatives and which can arise in the supersonic regions.

2 Classification of Second-Order Equations in n Variables

We now consider the classification to second-order PDEs in more than two independent vari-

ables. To extend the examination of characteristics for more than two independent variables is

less useful. In n dimension, we need to consider (n−1) dimensional surfaces. In three dimen-

sions, it is necessary to obtain transformations, ξ = ξ (x,y,z), η = η(x,y,z), and ζ = ζ (x,y,z)

such that all cross derivatives in (ξ ,η,ζ ) disappear. However, this approach will fail for more

than three independent variables and hence it is not usually possible to reduce the equation to

a simple canonical form. Consider a general second-order semilinear partial differential equation

in n independent variables

a11
∂ 2u

∂x1∂x1
+ a12

∂ 2u

∂x1∂x2
+ a13

∂ 2u

∂x1∂x3
+ · · · + a1n

∂ 2u

∂x1∂xn
+

a21
∂ 2u

∂x2∂x1
+ a22

∂ 2u

∂x2∂x2
+ a23

∂ 2u

∂x2∂x3
+ · · · + a2n

∂ 2u

∂x2∂xn

+

...
...

...
. . .

...

an1
∂ 2u

∂xn∂x1
+ an2

∂ 2u

∂xn∂x2
+ an3

∂ 2u

∂xn∂x3
+ · · · + ann

∂ 2u

∂xn∂xn

+

b1
∂u

∂x1
+ b2

∂u

∂x2
+ b3

∂u

∂x3
+ · · · + bn

∂u

∂xn
+ cu + d = 0

For more than three independent variables it is convenient to write the above PDE in the

following form:
n

∑
i=1

n

∑
j=1

ai j
∂ 2u

∂xi∂x j

+
n

∑
i=1

bi
∂u

∂xi

+ cu + d = 0 (42)

where the coefficients ai j, bi, c, d are functions of x = (x1,x2, . . . ,xn), u = u(x1,x2, . . . ,xn), and

n is the number of independent variables. Equation (42) can be written in matrix form as

[

∂
∂x1

· · · ∂
∂xn

]







a11 · · · a1n
...

. . .
...

an1 · · · ann













∂u
∂x1
...

∂u
∂xn






+
[

b1 · · · bn

]







∂u
∂x1
...

∂u
∂xn






+ cu + d = 0
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We assume that the coefficient matrix A = (ai j) to be symmetric. If A is not symmetric, we

can always find a symmetric matrix ai j =
1
2
(ai j +a ji) such that (42) can be rewritten as

n

∑
i=1

n

∑
j=1

ai j
∂ 2u

∂xi∂x j
+

n

∑
i=1

bi
∂u

∂xi
+ cu + d = 0

For example, consider the equation

∂ 2u

∂x2
1

− ∂ 2u

∂x1∂x2
+

∂ 2u

∂x2
2

= f (x1,x2)

Since
∂ 2u

∂x1∂x2
=

∂ 2u

∂x2∂x1

we may write
∂ 2u

∂x2
1

− 1

2

∂ 2u

∂x1∂x2
− 1

2

∂ 2u

∂x2∂x1
+

∂ 2u

∂x2
2

= f (x1,x2)

or in matrix form

[

∂
∂x1

∂
∂x2

]

[

1 −1/2

−1/2 1

]

[

∂u
∂x1
∂u
∂x2

]

= f (x1,x2)

Comparing to the general equation in matrix form above, we can see that the coefficient matrix

A is now symmetric.

Now consider the transformation

ξ = Qx

where ξ = (ξ1,ξ2, . . . ,ξn) and Q = (qi j) is an n×n arbitrary matrix. Using index notation, this

transformation can be written as

ξi =
n

∑
j=1

qi jx j

Repeated application of chain rule in the forms

∂

∂xi

=
n

∑
k=1

∂

∂ξk

∂ξk

∂xi

and
∂ 2

∂xi∂x j
=

n

∑
k,l=1

∂ 2

∂ξk∂ξl

∂ξk

∂xi

∂ξl

∂x j

to the derivatives of u(x1,x2, . . . ,xn) in (42) with respect to x1,x2, . . . ,xn transforms them into

derivatives of w(ξ1,ξ2, . . . ,ξn) with respect to ξ1,ξ2, . . . ,ξn. This allows equation (42) to be

expressed as
n

∑
k,l=1

(

n

∑
i, j=1

qkiai jql j

)

∂ 2u

∂ξk ∂ξl

+ lower-order terms = 0 (43)
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The coefficient matrix of the terms ∂ 2u/(∂ξk∂ξl) in this transformed expression is seen to be

equal to QT AQ. That is,

(qkiai jql j) ≡ QT AQ

From linear algebra, we know that for any real symmetric matrix A, there is an associate

orthogonal matrix P such that PT AP = Λ. Here P is called diagonalizing matrix of A and Λ is

a diagonal matrix whose element are the eigenvalues, λi, of A and the columns of P the linearly

independent eigenvectors of A, ei = (e1i,e2i, . . . ,eni). So, we have

P = (ei j) and Λ = (λiδi j), i, j = 1,2, . . . ,n

where δi j is the Kronecker delta. Now if the transformation is such that Q is taken to be a

diagonalizing matrix of A, it follows that

QT AQ = Λ =











λ1

λ2

. . .

λn











(44)

The numbers λ1,λ2, . . . ,λn are real, because the eigenvalues of a real symmetric matrix are

always real. It is instructive to note that the previously mentioned transformation (for second-

order PDE with two independent variables) to remove cross derivatives is equivalent to finding

eigenvalues λi of the coefficient matrix A.

We are now in a position to classify the equation (42).

• Equation is called elliptic if all eigenvalues λi of A are non-zero and have the same sign.

• Equation is called hyperbolic if all eigenvalues λi of A are non-zero and have the same

sign except for one of the eigenvalues.

• Equation is called parabolic if any of the eigenvalues λi of A is zero. This means that the

coefficient matrix A is singular.

When more than two independent variables are involved, there are other intermediate classifi-

cations exist which depends on the number of zero eigenvalues and the pattern of signs of the

non-zero eigenvalues. These sub classification has not much practical importance and will not

be discussed here.

Example 7

Classify the three-dimensional Laplace equation

uxx + uyy + uzz = 0

Solution The coefficient matrix is given by

A =





1 0 0

0 1 0

0 0 1




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As the coefficient matrix is already in diagonalized form it can be seen immediately that it has

three non-zero eigenvalues which are all positive. Hence, according to the classification rule the

given PDE is elliptic.

Example 8

Classify the two-dimensional wave equation

utt − c2 (uxx + uyy) = 0

Solution The coefficient matrix is given by

A =





1 0 0

0 −c2 0

0 0 −c2





As the coefficient matrix is already in diagonalized form it can be seen immediately that it

has three non-zero eigenvalues which are all negative except one. Hence, according to the

classification rule the given PDE is hyperbolic.

Example 9

Classify the two-dimensional heat equation

ut − α (uxx + uyy) = 0

Solution The coefficient matrix is given by

A =





0 0 0

0 −α 0

0 0 −α





As the coefficient matrix is already in diagonalized form it can be seen immediately that it has

a zero eigenvalue. Hence, according to the classification rule the given PDE is parabolic.

Example 10

Classify the two-dimensional equation

∂ 2u

∂x2
− ∂ 2u

∂x∂y
+

∂ 2u

∂y2
= f (x,y)

Solution First of we write the given equation in the following form:

∂ 2u

∂x2
− 1

2

∂ 2u

∂x∂y
− 1

2

∂ 2u

∂y∂x
+

∂ 2u

∂y2
= f (x,y)
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The coefficient matrix is then given by

A =

[

1 −1
2

−1
2

1

]

Since the coefficient matrix not in diagonalized form, we solve the eigenvalue problem det(A−
λ I) = 0. That is,

∣

∣

∣

∣

1−λ −1
2

−1
2

1−λ

∣

∣

∣

∣

= 0

Expanding the determinant to obtain

(1−λ )2 − 1

4
= 0 =⇒ λ 2 −2λ +

3

4
= 0

Hence the two eigenvalues are λ1 = 1/2 and λ2 = 3/2. The equation is elliptic.

Example 11

Classify the following small disturbance potential equation for compressible flows:

(

1−M2
∞

) ∂ 2φ

∂x2
+

∂ 2φ

∂y2
= 0

Solution The coefficient matrix is then given by

A =

[

1−M2
∞ 0

0 1

]

As the coefficient matrix is already in diagonalized form it can be seen immediately that its

eigenvalues are given by

λ1 = 1, λ2 = 1−M2
∞

It follows that: If M2
∞ < 1 then all eigenvalues are nonzero and of same sign thus small distur-

bance potential equation is elliptic, if M2
∞ = 1 then one of the eigenvalues is zero thus small

disturbance potential equation is parabolic, and if M2
∞ > 1 then all eigenvalues are nonzero and

are of opposite sign thus small disturbance potential equation is hyperbolic.

3 Classification of First-Order System of Equations

Consider the semilinear1 first-order system of two equations in two dependent variables (u, v)

and three independent variables (x, y, z) (corresponding to a thee-dimensional space) as given

below:

a11
∂u

∂x
+ a12

∂v

∂x
+ b11

∂u

∂y
+ b12

∂v

∂y
+ c11

∂u

∂ z
+ c12

∂v

∂ z
= f1

a21
∂u

∂x
+ a22

∂v

∂x
+ b21

∂u

∂y
+ b22

∂v

∂y
+ c21

∂u

∂ z
+ c22

∂v

∂ z
= f2

1For a first-order PDE to be semilinear, ai j = ai j(x,y,z), bi j = bi j(x,y,z), ci j = ci j(x,y,z) and fi = fi(x,y,z,u,v).
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In matrix form, we have

[

a11 a12 b11 b12 c11 c12

a21 a22 b21 b22 c21 c22

]





















∂u
∂x
∂v
∂x
∂u
∂y
∂v
∂y
∂u
∂ z
∂v
∂ z





















=

[

f1

f2

]

Alternatively, the above system can be rewritten as

[

a11 a12

a21 a22

]

∂

∂x

[

u

v

]

+

[

b11 b12

b21 b22

]

∂

∂y

[

u

v

]

+

[

c11 c12

c21 c22

]

∂

∂ z

[

u

v

]

=

[

f1

f2

]

or

A(x,y,z)
∂U

∂x
+ B(x,y,z)

∂U

∂y
+ C(x,y,z)

∂U

∂ z
= F(x,y,z,U)

where

U =

[

u

v

]

F =

[

f1

f2

]

Using indicial notations, the system of first-order PDE for two dependent variables and three

independent variables can be written as

2

∑
j=1

(

ai j

∂u j

∂x
+ bi j

∂u j

∂y
+ ci j

∂u j

∂ z

)

= fi, i = 1,2

The system of first-order PDE of three independent variables can be generalized for n dependent

variables, u j, as follows:

n

∑
j=1

(

ai j

∂u j

∂x
+ bi j

∂u j

∂y
+ ci j

∂u j

∂ z

)

= fi, i = 1,2, . . . ,n (45a)

or in matrix form

A
∂U

∂x
+ B

∂U

∂y
+ C

∂U

∂ z
= F (45b)

where

A =







a11 · · · a1n
...

. . .
...

an1 · · · ann






B =







b11 · · · b1n
...

. . .
...

bn1 · · · bnn






C =







c11 · · · c1n
...

. . .
...

cn1 · · · cnn







U =











u1

u2
...

un











F =











f1

f2
...

fn










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Finally, we consider the most general form of system of first-order PDEs. Suppose we have

n dependent variables u j, in an m-dimensional space xk (i.e., m independent variables), we can

group all the variables u j in an (n× 1) column vector U and write the system of first-order

PDEs
m

∑
k=1

Ak ∂U

∂xk

= F (46a)

or
m

∑
k=1

n

∑
j=1

ak
i j

∂u j

∂xk

= fi, i = 1,2, . . . ,n (46b)

As an example let us consider the system n equations (and an equal number of dependent

variables) in two dimensions (x,y):







a11 · · · a1n
...

. . .
...

an1 · · · ann







∂

∂x







u1
...

un






+







b11 · · · b1n
...

. . .
...

bn1 · · · bnn







∂

∂y







u1
...

un






=







f1
...

fn







or

A(x,y)
∂U

∂x
+ B(x,y)

∂U

∂y
= F(x,y,U) (47)

Assuming that A is nonsingular, the system (47) can be written in a more convenient form by

pre-multiplying by A−1:
∂U

∂x
+ D(x,y)

∂U

∂y
= E(x,y,U) (48)

or






1 · · · 0
...

. . .
...

0 · · · 1







∂

∂x







u1
...

un






+







d11 · · · d1n
...

. . .
...

dn1 · · · dnn







∂

∂y







u1
...

un






=







e1
...

en







where

D = A−1B and E = A−1F

Using indicial notation, the system (48) can be written as

∂u j

∂x
+

n

∑
j=1

di j

∂u j

∂y
= ei, i = 1,2, . . . ,n

and in component form, the system becomes

∂u1

∂x
+ d11

∂u1

∂y
+ d12

∂u2

∂y
+ · · · + d1n

∂un

∂y
= e1

∂u2

∂x
+ d21

∂u1

∂y
+ d22

∂u2

∂y
+ · · · + d2n

∂un

∂y
= e2

...
...

...
. . .

...
...

∂un

∂x
+ dn1

∂u1

∂y
+ dn2

∂u2

∂y
+ · · · + dnn

∂un

∂y
= en
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Just as in the case of a single partial differential equation, the important properties of

solutions of the system (48) depend only on its principal part Ux +DUy. Since this principal

part is completely determined by the coefficient matrix D(x,y) = A−1B, this matrix plays a

fundamental role in the study of (47).

3.1 Canonical form and classification

In order to solve the system (48), we first write the system of equations (48) in canonical form

(or decoupled form). To this end we use the following definition: A matrix D is said to be

diagonalisable if D can be expressed as

D = PΛP−1 or Λ = P−1DP (49)

where Λ(x,y) be the n× n diagonal matrix with diagonal entries the eigenvalues of D and P

is the diagonalizing matrix of D where the columns are eigenvectors of D corresponding to

eigenvalues of D, i.e.,

Λ = (λiδi j) =







λ1 · · · 0
...

. . .
...

0 · · · λn






, P = (pi j) =







p11 · · · p1n
...

. . .
...

pn1 · · · pnn






, DPi = λiPi

where δi j is the Kronecker delta. A system (48) is said to be diagonalisable if the coefficient ma-

trix D is diagonalisable. Based on the concept of diagonalisation one often defines a hyperbolic

system (48) as a system with real eigenvalues and diagonalisable coefficient matrix.

3.1.1 Characteristic variable and characteristic form of the system

The existence of the inverse matrix P−1 makes it possible to define a new set of dependent

variables W = (w1,w2, . . . ,wn)
T via the transformation

W = P−1U ⇒ U = PW

where the new variables W is called characteristic variables. Then

∂U

∂x
= P

∂W

∂x
+

∂P

∂x
W,

∂U

∂y
= P

∂W

∂y
+

∂P

∂y
W

Substituting these into (48) to obtain

P
∂W

∂x
+

∂P

∂x
W + DP

∂W

∂y
+ D

∂P

∂y
W = E

Rearranging,

P
∂W

∂x
+ DP

∂W

∂y
= E −

(

∂P

∂x
+ D

∂P

∂y

)

W = G
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We multiply the above equation by P−1 to obtain

∂W

∂x
+ P−1DP

∂W

∂y
= H (50)

where

H = P−1G = P−1

[

E −
(

∂P

∂x
+ D

∂P

∂y

)

W

]

.

Now, using Λ = P−1DP, we have

∂W

∂x
+ Λ(x,y)

∂W

∂y
= H(x,y,W ) (51a)

This is is called the canonical form or characteristic form of the system (47). The simplicity of

the canonical form (51a) becomes apparent if we write it in component form,

∂wi

∂x
+ λi(x,y)

∂wi

∂y
= hi(x,y,w1, . . . ,wn), i = 1,2, . . . ,n (51b)

or

∂w1

∂x
+ λ1

∂w1

∂y
= h1

∂w2

∂x
+ λ2

∂w2

∂y
= h2

...
... (51c)

∂wn

∂x
+ λn

∂wn

∂y
= hn

or

∂

∂x







w1
...

wn






+







λ1 · · · 0
...

. . .
...

0 · · · λn







∂

∂y







w1
...

wn






=







h1
...

hn






(51d)

It is clear that the principal part of the ith equation involves only the single unknown wi and

thus the system of equations are said to be decoupled and is identical to the linear advection

equation if eigenvalues λi (characteristic speeds) are real and distinct.

The classification of the system of first-order PDEs (47) is done based on the nature of the

eigenvalues λi of the matrix P−1DP, which are exactly the eigenvalues values of D = A−1B.

Recall that an eigenvalue of D is a root λ of the characteristic equation

|D − λ I| = 0.

The system (47) based on the nature of its eigenvalues is classified as follows:

• If all the n eigenvalues of D are real and distinct the system is called hyperbolic type. If

the eigenvectors corresponding to the real eigenvalues are also distinct, the system is said

to be strictly hyperbolic.
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• If all the n eigenvalues of D are complex the system is called elliptic type.

• If some of the n eigenvalues are real and other complex the system is considered as hybrid

of elliptic-hyperbolic type.

• If the rank of matrix D is less than n, i.e., there are less than n real eigenvalues (some of

the eigenvalues are repeated) then the system is said to be parabolic type.

For a system of PDE having only two dependent variables, we can determine the eigenvalues

of matrix D analytically and state the conditions classification in an explicit manner as follows.

Consider the system of two equations (with dependent variables u1 and u2) in two dimensions

(x,y):

a11
∂u1

∂x
+ a12

∂u2

∂x
+ b11

∂u1

∂y
+ b12

∂u2

∂y
= f1 (52a)

a21
∂u1

∂x
+ a22

∂u2

∂x
+ b21

∂u1

∂y
+ b22

∂u2

∂y
= f2 (52b)

In matrix form,
[

a11 a12

a21 a22

]

∂

∂x

[

u1

u2

]

+

[

b11 b12

b21 b22

]

∂

∂y

[

u1

u2

]

=

[

f1

f2

]

or

A
∂

∂x

[

u1

u2

]

+ B
∂

∂y

[

u1

u2

]

= F

where

A =

[

a11 a12

a21 a22

]

, B =

[

b11 b12

b21 b22

]

, F =

[

f1

f2

]

The inverse of A is

A−1 =
1

|A|

[

a22 −a12

−a21 a11

]

where |A| is the determinant of matrix A. We now compute the matrix D as

D = A−1B =
1

|A|

[

a22 −a12

−a21 a11

][

b11 b12

b21 b22

]

=
1

|A|

[

a22b11 −a12b21 a22b12 −a12b22

a11b21 −a21b11 a11b22 −a21b12

]

so that the system (52) may be written as

∂

∂x

[

u1

u2

]

+
1

|A|

[

a22b11 −a12b21 a22b12 −a12b22

a11b21 −a21b11 a11b22 −a21b12

]

∂

∂y

[

u1

u2

]

=

[

e1

e2

]

To determine eigenvalues of D, we solve the following eigenvalue problem:

|D − λ I| = 0

Expanding the above determinant to obtain the characteristic equation

|A|λ 2 − |b|λ + |B| = 0 (53)
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where the determinants |A|, |B|, and |b| are given by

|A| =
∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21

|B| =
∣

∣

∣

∣

b11 b12

b21 b22

∣

∣

∣

∣

= b11b22 − b12b21

|b| =
∣

∣

∣

∣

a11 b12

a21 b22

∣

∣

∣

∣

+

∣

∣

∣

∣

b11 a12

b21 a22

∣

∣

∣

∣

= a11b22 − a21b12 + a22b11 − a12b21

The two roots of the quadratic equation for eigenvalues λ are given by

λ1,2 =
|b|±

√

|b|2 − 4|A||B|
2|A| (54)

Notice that this expression has the same form as equation (17) except that a, b, and c have now

become determinants. Clearly, the nature of the eigenvalues depends on the sign of discriminant

|b|2 − 4|A||B|. The different possibilities are given below:

• If |b|2 − 4|A||B|> 0, there exists two real and distinct eigenvalues and thus the system

is hyperbolic.

• If |b|2 − 4|A||B|< 0, there exists two complex eigenvalues and thus the system is elliptic.

• If |b|2 − 4|A||B|= 0, there is only one real eigenvalue and thus the system is parabolic.

We mention here that classification of second-order system of equations in general is very

complex. It is difficult to determine the mathematical character of these systems except for

simple cases.

3.1.2 A special case

When A is an identity matrix, the system of equation (47) takes the form

∂U

∂x
+ B(x,y)

∂U

∂y
= F(x,y,U) (55)

so that, we have

D = B and E = F

For a system of PDE having only two dependent variables, (55) becomes

∂u1

∂x
+ b11

∂u1

∂y
+ b12

∂u2

∂y
= f1 (56a)

∂u2

∂x
+ b21

∂u1

∂y
+ b22

∂u2

∂y
= f2 (56b)

or, in matrix form
∂

∂x

[

u1

u2

]

+

[

b11 b12

b21 b22

]

∂

∂y

[

u1

u2

]

= F
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To determine eigenvalues of D, we solve the eigenvalue problem |B − λ I| = 0. The corre-

sponding characteristic equation is

λ 2 − |b|λ + |B| = 0

where the determinants |B| and |b| are given by

|B| =
∣

∣

∣

∣

b11 b12

b21 b22

∣

∣

∣

∣

= b11b22 − b12b21

|b| =
∣

∣

∣

∣

b11 0

b21 1

∣

∣

∣

∣

+

∣

∣

∣

∣

1 b12

0 b22

∣

∣

∣

∣

= b11 + b22

The two roots of the quadratic equation for λ are given by

λ1,2 =
|b|±

√

|b|2 − 4|B|
2

(57)

Example 12

Classify the single first-order equation

a
∂u

∂x
+ b

∂u

∂y
= f

where a and b are real constants.

Solution In the standard matrix form the above equation may be written as

A
∂U

∂x
+ B

∂U

∂y
= F

where

A =
[

a
]

, B =
[

b
]

, U =
[

u
]

, F =
[

f
]

The D matrix, in this case, can be easily found:

D = A−1B =
[

a−1
][

b
]

=
[

b/a
]

The matrix D has the single eigenvalue, λ = b/a. This is always real and hence, a single

first-order PDE is always hyperbolic in the space (x,y). Note that since we have only a single

eigenvalue and thus only one characteristic direction.

Example 13

Classify the following system of first-order equation:

a
∂φ

∂x
+ c

∂ψ

∂y
= f1

b
∂ψ

∂x
+ d

∂φ

∂y
= f2
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The matrix form of the system is:

[

a 0

0 b

]

∂

∂x

[

φ

ψ

]

+

[

0 c

d 0

]

∂

∂y

[

φ

ψ

]

=

[

f1

f2

]

This equation may be written as

A
∂U

∂x
+ B

∂U

∂y
= F

where

A =

[

a 0

0 b

]

, B =

[

0 c

d 0

]

, U =

[

φ

ψ

]

, F =

[

f1

f2

]

Therefore, we have

a11 = a a12 = 0 a21 = 0 a22 = b

b11 = 0 b12 = c b21 = d b22 = 0

The relevant determinants can be now evaluated as

|A| = a11a22 − a12a21 = ab

|B| = b11b22 − b12b21 = −cd

|b| = a11b22 − a21b12 + a22b11 − a12b21 = 0

and the D matrix is given by

D = A−1B =
1

|A|

[

a22b11 −a12b21 a22b12 −a12b22

a11b21 −a21b11 a11b22 −a21b12

]

=
1

ab

[

0 bc

ad 0

]

=

[

0 c/a

d/b 0

]

so that the system (52) may be written as

∂

∂x

[

φ

ψ

]

+

[

0 c/a

d/b 0

]

∂

∂y

[

φ

ψ

]

=

[

e1

e2

]

The eigenvalues of D = A−1B are given by

λ1,2 =
|b|±

√

|b|2 − 4|A||B|
2|A| = ±

√

cd

ab

If cd/ab > 0 then the eigenvalues are real and distinct and the system is hyperbolic in the

space (x,y). For instance, a = b = 1; c = d = 1 with vanishing right-hand side, the system of

equation becomes

∂φ

∂x
+

∂ψ

∂y
= 0

∂ψ

∂x
+

∂φ

∂y
= 0
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By eliminating the variable ψ and replacing y by t, we obtain the well-known wave equation in

φ :
∂ 2φ

∂ t2
=

∂ 2φ

∂x2

which is a hyperbolic equation as seen previously.

If cd/ab < 0 then the eigenvalues are complex and the system is elliptic in the space (x,y).

For instance, a = b = 1; c = −d = −1 and vanishing right-hand side, the system of equation

becomes the well-known Cauchy–Riemann equation:

∂φ

∂x
− ∂ψ

∂y
= 0

∂ψ

∂x
+

∂φ

∂y
= 0

By eliminating the variable ψ, we obtain the Laplace equation in φ :

∂ 2φ

∂x2
+

∂ 2φ

∂y2
= 0

which is the standard form of elliptic equations and describes steady-state diffusion phenomena.

Note that we could also obtain the Laplace equation in ψ by eliminating the variable φ .

Finally, if one of the coefficients is equal zero, say c, then there is only one real eigenvalue

and the system is parabolic. For instance, with a =−b = 1, c = 0, d = 1 and f1 = ψ, f2 = 0,

the system of equation becomes

∂φ

∂x
= ψ

∂φ

∂y
− ∂ψ

∂x
= 0

which on eliminating the variable ψ and replacing y by t leads to the standard form for a

parabolic equation:
∂φ

∂ t
=

∂ 2φ

∂x2

This is recognizable by the fact that the equation presents a combination of first and second-

order derivatives.

Example 14

Let us find out the canonical form the system of first-order system of equations

∂u1

∂ t
+ c

∂u2

∂x
= 0

∂u2

∂ t
+ d

∂u1

∂x
= 0

(58)

where cd > 0.
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Solution The given system is coupled and is of the form (55) which can be written as

∂

∂ t

[

u1

u2

]

+

[

0 c

d 0

]

∂

∂x

[

u1

u2

]

=

[

0

0

]

or
∂U

∂ t
+ B

∂U

∂x
= F

where,

B =

[

0 c

d 0

]

, U =

[

u1

u2

]

, F =

[

0

0

]

Therefore, we have

b11 = 0 b12 = c b21 = d b22 = 0

The relevant determinants can be now evaluated:

|B| = b11b22 − b12b21 = −cd

|b| = b11 + b22 = 0

The eigenvalues of B are given by

λ1,2 =
|b|±

√

|b|2 − 4|B|
2

= ±
√

cd

The eigenvector for λ1 =
√

cd can be found as follows

[

0 c

d 0

][

p11

p21

]

=
√

cd

[

p11

p21

]

which produces two linear algebraic equations for the unknowns p11 and p21

cp21 =
√

cdp11 and dp11 =
√

cd p21

It may be noted that the above two equations are equivalent and so effectively we have a single

linear algebraic equation in two unknowns leading to one-parameter family of solutions. Thus

we select an arbitrary nonzero scaling factor α and set p11 = α in any of the equations to

obtain p21 = α
√

d/c for the second component and hence the first eigenvector becomes

[

p11

p21

]

= α

[

1
√

d/c

]

Taking the scaling factor α =
√

c gives the eigenvector

[

p11

p21

]

=

[ √
c√
d

]
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Similarly, the eigenvector for λ2 =−
√

cd is

[

0 c

d 0

][

p12

p22

]

= −
√

cd

[

p12

p22

]

=⇒
[

p12

p22

]

=

[ √
c

−
√

d

]

The P matrix can now be constructed using eigenvectors of B, that is,

P =

[

p11 p12

p21 p22

]

=

[ √
c

√
c√

d −
√

d

]

The inverse of P is

P−1 =
1

|P|

[

p22 −p12

−p21 p11

]

=
−1

2
√

cd

[

−
√

d −√
c

−
√

d
√

c

]

=
1

2

[

1/
√

c 1/
√

d

1/
√

c −1/
√

d

]

Therefore,

P−1BP = Λ =

[
√

cd 0

0 −
√

cd

]

The canonical form is then given by

∂W

∂ t
+ Λ

∂W

∂x
= 0

or
∂

∂ t

[

w1

w2

]

+

[
√

cd 0

0 −
√

cd

]

∂

∂x

[

w1

w2

]

=

[

0

0

]

or in component form
∂w1

∂ t
+

√
cd

∂w1

∂x
= 0

∂w2

∂ t
−

√
cd

∂w2

∂x
= 0

(59)

The canonical (decoupled) form (59) is particularly simple. Each equation involves only one

unknown and can be easily solved by the methods of characteristics.

3.2 The Method of Characteristics for Linear Hyperbolic Systems

Consider the quasilinear system (48) of n equations in n dependent variables and two indepen-

dent variables x and t written as

∂U

∂ t
+ D(x, t)

∂U

∂x
= E(x, t,U) (60)

A characteristic curve of system (60) is a curve in the xt-plane given by x = x(t), where x(t) is

a solution of the differential equation

dx

dt
= λ (x, t)
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with λ (x, t) being an eigenvalue of D(x, t). Since the system (60) is said to be elliptic if D(x, t)

has no real eigenvalues, it follows that elliptic systems, just like elliptic equations, have no

characteristic curves.

If the system (60) is assumed to be hyperbolic in the given domain, then as per the definition,

the D(x, t) will have n distinct eigenvalues λ1(x, t), λ2(x, t), . . . ,λn(x, t). It then follows that

there are exactly n distinct characteristic curves of (60) passing through any given point (x, t),

each curve corresponding to an eigenvalue of D(x, t). The characteristic curve corresponding

to the eigenvalue λi(x, t), is the solution curve of the initial value problem,

dx

dt
= λi(x, t), i = 1,2, . . . ,n

Since all the eigenvalues are distinct of (60), the characteristic curves are never tangent.

Moreover, at a point where an eigenvalue is zero, the correspond ing characteristic is parallel

to the t-axis. However, a characteristic curve of (60) can never be parallel to the x-axis.

Example 15

The one-dimensional form of the time-dependent shallow water equations can be written as

∂h

∂ t
+ u

∂h

∂x
+ h

∂u

∂x
= 0

∂u

∂ t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

where h represents the water height, g is the gravity acceleration and u the horizontal velocity.

Solution Since A is a unit matrix, the given system in matrix form

∂

∂ t

[

h

u

]

+

[

u h

g u

]

∂

∂x

[

h

u

]

= 0

Introducing the vector

U =

[

h

u

]

the system is written in the condensed form:

∂U

∂ t
+ B

∂U

∂x
= 0

where,

B =

[

u h

g u

]

, U =

[

h

u

]

, F =

[

0

0

]

Therefore, we have

b11 = u b12 = h b21 = g b22 = u
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The relevant determinants can be now evaluated:

|B| = b11b22 − b12b21 = u2 − gh

|b| = a11b22 − a21b12 + a22b11 − a12b21 = u+u = 2u

The eigenvalues of B are given by

λ1,2 =
|b|±

√

|b|2 − 4|B|
2

=
2u±

√

4u2 −4(u2 −gh)

2
= u±

√

gh

The eigenvector for λ1 = u+
√

gh can be found as follows

[

u h

g u

][

e11

e21

]

= (u+
√

gh)

[

e11

e21

]

=⇒
[

e11

e21

]

=

[
√

h√
g

]

Similarly, the eigenvector for λ2 = u−
√

gh is

[

u h

g u

][

e12

e22

]

= (u−
√

gh)

[

e12

e22

]

=⇒
[

e12

e22

]

=

[

−
√

h√
g

]

The P matrix can now be constructed using eigenvectors of B, that is,

P =

[

e11 e12

e21 e22

]

=

[
√

h −
√

h√
g

√
g

]

Now, the diagonal matrix Λ by definition is P−1BP. As we have already found the eigenvalues

of B, the matrix Λ can be directly obtained as

Λ =

[

u+
√

gh 0

0 u−
√

gh

]

The canonical form is then given by

∂W

∂ t
+ Λ

∂W

∂x
= 0

or
∂

∂ t

[

w1

w2

]

+

[

u+
√

gh 0

0 u−
√

gh

]

∂

∂x

[

w1

w2

]

=

[

0

0

]

or in component form
∂w1

∂ t
+ (u+

√
gh)

∂w1

∂x
= 0

∂w2

∂ t
+ (u−

√
gh)

∂w2

∂x
= 0

Each equation involves only one unknown and can be easily solved by the methods of charac-

teristics.

The procedure for classification of semi-linear PDEs is equally applicable for quasilinear

PDEs. We illustrate this with an example from fluid dynamics.
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Example 16

Classify the Euler equations for unsteady, one-dimensional flow:

∂ρ

∂ t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂ t
+ u

∂u

∂x
= − 1

ρ

∂ p

∂x
= −c2

ρ

∂ρ

∂x

where the speed of sound c is given by the isentropic relation between pressure and density as

c2 =

(

∂ p

∂ρ

)

s

Solution In matrix form the Euler equation can be written as

[

1 0

0 1

]

∂

∂ t

[

ρ

u

]

+

[

u ρ

c2/ρ u

]

∂

∂x

[

ρ

u

]

= 0

Introducing the vector

U =

[

ρ

u

]

the system can be written in the condensed form:

A
∂U

∂ t
+ B

∂U

∂x
= 0

where,

A =

[

1 0

0 1

]

, B =

[

u ρ

c2/ρ u

]

, U =

[

ρ

u

]

, F =

[

0

0

]

Therefore, we have

a11 = 1 a12 = 0 a21 = 0 a22 = 1

b11 = u b12 = ρ b21 = c2/ρ b22 = u

The relevant determinants can be now evaluated:

|A| = a11a22 − a12a21 = 1

|B| = b11b22 − b12b21 = u2 − c2

|b| = a11b22 − a21b12 + a22b11 − a12b21 = u+u = 2u

Since A is a unit matrix, the inverse of A is A itself. We now compute the matrix D:

D = A−1B = B =

[

u ρ

c2/ρ u

]
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The system of Euler equation can now be written as

∂U

∂ t
+ D

∂U

∂x
= 0

The eigenvalues of D = A−1B are given by

λ1,2 =
|b|±

√

|b|2 − 4|A||B|
2|A| =

2u±
√

4u2 −4(u2 − c2)

2
= u± c

Therefore, the two characteristics of this hyperbolic system are given by

dx

dt
= u± c

The eigenvector for λ1 = u+ c can be found as follows

[

u ρ

c2/ρ u

][

e11

e21

]

= (u+ c)

[

e11

e21

]

=⇒
[

e11

e21

]

=

[

ρ

c

]

Similarly, the eigenvector for λ2 = u− c is

[

u ρ

c2/ρ u

][

e12

e22

]

= (u− c)

[

e12

e22

]

=⇒
[

e12

e22

]

=

[

−ρ

c

]

The P matrix can now be constructed using eigenvectors of D, that is,

P =

[

e11 e12

e21 e22

]

=

[

ρ −ρ

c c

]

Therefore,

P−1DP = Λ =

[

u+ c 0

0 u− c

]

The canonical form is then given by

∂W

∂ t
+ Λ

∂W

∂x
= 0

or
∂

∂ t

[

w1

w2

]

+

[

u+ c 0

0 u− c

]

∂

∂x

[

w1

w2

]

=

[

0

0

]

or in component form
∂w1

∂ t
+ (u+ c)

∂w1

∂x
= 0

∂w2

∂ t
+ (u− c)

∂w2

∂x
= 0

Each equation involves only one unknown and can be easily solved by the methods of charac-

teristics.
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Note: Since both the eigenvalues are real, for all values of the velocity u, the system is always

hyperbolic in space and time. This is an extremely important property that the steady isentropic

Euler equations are elliptic in the space (x,y) for subsonic velocities and hyperbolic in the space

(x,y) for supersonic velocities.

Here, in space and time, the inviscid isentropic equations are always hyperbolic independently

of the subsonic or supersonic state of the flow. As a consequence, the same numerical algorithms

can be applied for all flow velocities. On the other hand, dealing with the steady state equations,

the numerical algorithms will have to adapt to the flow regime, as the mathematical nature of

the system of equations is changing when passing from subsonic to supersonic, or inversely.

This is the main reason for the very widespread choice of the time-dependent form of the

conservation laws as basis for the numerical discretization, even for the simulation of steady

flows. In this approach, we solve the flow equations in time until a numerical steady state is

reached, while the numerical transient is defined in such away as to reach the steady state as

fast as possible, through different numerical acceleration techniques, such as local time steps.

It can be demonstrated that this property is not restricted to one space dimension. It is

indeed valid for all dimensions, and is shown here for two space dimensions, considering the

time-dependent form of the Euler equation.

Example 17

Classify the steady, inviscid, 2-dimensional flow Euler equations:

u
∂ρ

∂x
+ ρ

∂u

∂x
+ v

∂ρ

∂y
+ ρ

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂ p

∂x
= −c2

ρ

∂ρ

∂x

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂ p

∂y
= −c2

ρ

∂ρ

∂y

where the speed of sound c is given by the isentropic relation between pressure and density as

c2 =

(

∂ p

∂ρ

)

s

Solution In matrix form





u ρ 0

c2/ρ u 0

0 0 u





∂

∂x





ρ

u

v



 +





v 0 ρ

0 v 0

c2/ρ 0 v





∂

∂y





ρ

u

v



 = 0

Introducing the vector

U =





ρ

u

v




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the system is written in the condensed form:

A
∂U

∂x
+ B

∂U

∂y
= 0

where,

A =





u ρ 0

c2/ρ u 0

0 0 u



 , B =





v 0 ρ

0 v 0

c2/ρ 0 v



 , U =





ρ

u

v



 , F =





0

0

0





The system of Euler equation can now be written in standard form as

∂U

∂ t
+ D

∂U

∂x
= 0

where

D = A−1B =
1

u(u2 − c2)





u2 −ρu 0

−uc2/ρ u2 0

0 0 u2 − c2









v 0 ρ

0 v 0

c2/ρ 0 v





=
1

u(u2− c2)





u2v −ρv ρu2

−uvc2/ρ u2v −uc2

c2(u2 − c2)/ρ 0 v(u2 − c2)





Working out the characteristic equation, |D − λ I| = 0 leads to the following eigenvalues:

λ1 = −v

u
, λ2,3 =

−uv± c
√

u2 + v2 − c2

u2 − c2

The first solution is always real, and the two others are real if the flow is supersonic, since

equation above can be written as follows, after introduction of the Mach number:

M =

√
u2 + v2

c

λ2,3 =
−uv± c2

√
M2 −1

u2 − c2

Hence, the stationary Euler equations are hyperbolic in (x, y) for supersonic flows. For subsonic

flows, the second and third solutions are complex conjugate while the first solution is real.

Hence, for subsonic flows, the stationary Euler equations are a mixed elliptic-hyperbolic system.

At the sonic velocity M = 1, the two solutions λ2 = λ3 and the system is parabolic.
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